Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability

被引:47
|
作者
Li, Jiayi [1 ]
Zhang, Yizhuo [1 ]
Shang, Rong [1 ]
Cheng, Chen [1 ]
Cheng, Yan [1 ]
Xing, Jianxin [1 ]
Wei, Zhenzhen [1 ]
Zhao, Yan [1 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Suzhou 215123, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium ion battery; Separator; Irreversible; Reversible; Thermal shutdown; CRITICAL SOLUTION TEMPERATURE; THERMORESPONSIVE POLYMERS; POLYETHYLENE SEPARATOR; COMPOSITE SEPARATORS; MELTDOWN TEMPERATURE; COATED SEPARATOR; RATIONAL DESIGN; HIGH-SAFETY; MEMBRANE; PERFORMANCE;
D O I
10.1016/j.ensm.2021.08.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Currently, advancements in separator technology for lithium-ion batteries (LIBs) have been developed due to their widespread use and key role in ion transportation. Nevertheless, there is still a need for ensuring the operation safety, service life, and user's experience of the batteries. In order to avoid the safety issues caused by the elevating temperature during working process, it is essential to endow separators with thermal shutdown function, which can timely cut off the current and prevent the electrodes from contacting. At the same time, the demand for recycling and sustainability of separators are also growing. Therefore, functional separators with irreversible or reversible thermal shutdown ability came out for future utility and manufacture. In this review, we aim to provide a comprehensive analysis of the technologies employed to enhance the safety of LIBs via highlighting the recent achievements in separators with irreversible thermal protection fabricated by different methods and mechanisms. Moreover, we summarize the intelligent materials that are able to take actions and self-adapt in reversibly thermal protection separators. Current research directions and challenges associated with the use of these LIBs separators and future perspectives in battery thermal protection are also provided. We hope such a review could provide inspiration for the separator researches dedicated on the cyclic utilization, high safety and high performance for future battery developments.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [31] Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators
    Wang Zhengduo
    Zhu Huiqin
    Yang Lizhen
    Wang Xinwei
    Liu Zhongwei
    Chen Qiang
    PLASMA SCIENCE & TECHNOLOGY, 2016, 18 (04) : 424 - 429
  • [32] Investigation on the Organic/Polypropylene Composite Separators for Lithium-ion Battery
    Li, Jian-si
    Wang, Jing
    Chen, Chun-hai
    Dang, Cuo-dong
    Zhou, Jian-jun
    Li, Lin
    ACTA POLYMERICA SINICA, 2015, (11) : 1294 - 1298
  • [33] Study on the Reversible and Irreversible Heat Generation of the Lithium-Ion Battery with LiFePO4 Cathode
    Weiwei Shao
    Beibei Zhao
    Wenjuan Zhang
    Yan Feng
    Wenfeng Mao
    Guo Ai
    Kehua Dai
    Fire Technology, 2023, 59 : 289 - 303
  • [34] Study on the Reversible and Irreversible Heat Generation of the Lithium-Ion Battery with LiFePO4 Cathode
    Shao, Weiwei
    Zhao, Beibei
    Zhang, Wenjuan
    Feng, Yan
    Mao, Wenfeng
    Ai, Guo
    Dai, Kehua
    FIRE TECHNOLOGY, 2023, 59 (02) : 289 - 303
  • [35] Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators
    王正铎
    朱惠钦
    杨丽珍
    王新炜
    刘忠伟
    陈强
    Plasma Science and Technology, 2016, 18 (04) : 424 - 429
  • [36] Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators
    王正铎
    朱惠钦
    杨丽珍
    王新炜
    刘忠伟
    陈强
    Plasma Science and Technology, 2016, (04) : 424 - 429
  • [37] Preparation and Performance of Inorganic Composite Separators for Lithium-ion Battery
    Hu, Zhi-yu
    Li, Li-ping
    Zhou, Jian-jun
    Li, Lin
    ACTA POLYMERICA SINICA, 2015, (11) : 1288 - 1293
  • [38] A multiscale study on the effect of compression on lithium-ion battery separators
    Xu, Jie
    Zhu, Lijun
    Xiao, Liusheng
    Hu, Hao
    Yin, Zequan
    Zhang, Ruiming
    Jung, Joey Chung-Yen
    Shen, Zu-Guo
    Sui, Pang-Chieh
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [39] Swelling and softening of lithium-ion battery separators in electrolyte solvents
    Gor, Gennady Y.
    Cannarella, John
    Leng, Cohen Z.
    Vishnyakov, Aleksey
    Arnold, Craig B.
    JOURNAL OF POWER SOURCES, 2015, 294 : 167 - 172
  • [40] ForceSpinning of polyacrylonitrile for mass production of lithium-ion battery separators
    Agubra, Victor A.
    De la Garza, David
    Gallegos, Luis
    Alcoutlabi, Mataz
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (01)