One-class SVM based approach for detecting anomalous audio events

被引:18
|
作者
Aurino, Francesco [1 ]
Folla, Mariano [1 ]
Gargiulo, Francesco [1 ]
Moscato, Vincenzo [1 ]
Picariello, Antonio [1 ]
Sansone, Carlo [1 ]
机构
[1] Univ Naples Federico II, DIETI, Naples, Italy
来源
2014 INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS) | 2014年
关键词
Survelliance Systems; One-class SVM; Audio Events Detection;
D O I
10.1109/INCoS.2014.59
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The last generation automated security and surveillance systems call for new and advanced capabilities to automatically and reliably recognize suspicious events or activities in the monitored environments on the base of a real-time and combined analysis of different multimedia streams. In this paper we focus our attention on the analysis of audio signal and present a method based on one-class Support Vector Machine (1-SVM) classifiers. Such an approach is able to support the recognition of different kinds of burst-like anomalies (i.e. gun-shots, broken glasses and screams), on the base of their time and frequency domain characterization. Several experiments have been carried out, showing the potentiality of our method with respect to other approaches proposed in the recent literature.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 50 条
  • [21] Resampling approach for one-Class classification; Resampling approach for one-Class classification
    Lee H.-H.
    Park S.
    Im J.
    Pattern Recognition, 2023, 143
  • [22] One-Class SVM Assisted Accurate Tracking
    Fu, Keren
    Gong, Chen
    Qiao, Yu
    Yang, Jie
    Gu, Irene
    2012 SIXTH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), 2012,
  • [23] Improving one-class SVM for anomaly detection
    Li, KL
    Huang, HK
    Tian, SF
    Xu, W
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 3077 - 3081
  • [24] CS-1-SVM: Improved one-class SVM for detecting API abuse on open network service
    Xie, Min
    Huang, Wei
    Yang, Li
    Yang, Yixian
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (11) : 4068 - 4075
  • [25] Comparison of one-class SVM and two-class SVM for fold recognition
    Senf, Alexander
    Chen, Xue-wen
    Zhang, Anne
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 140 - 149
  • [26] A NEW ONE-CLASS SVM FOR ANOMALY DETECTION
    Chen, Yuting
    Qian, Jing
    Saligrama, Ventatesh
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3567 - 3571
  • [27] Robust one-class SVM for fault detection
    Xiao, Yingchao
    Wang, Huangang
    Xu, Wenli
    Zhou, Junwu
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 151 : 15 - 25
  • [28] One-Class SVM for landmine detection and discrimination
    Tbarki, Khaoula
    Ben Said, Salma
    Ksantini, Riadh
    Lachiri, Zied
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 309 - 313
  • [29] One-class SVM for learning in image retrieval
    Chen, YQ
    Zhou, XS
    Huang, TS
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 34 - 37
  • [30] Player detection using One-Class SVM
    Bai, Xuefeng
    Zhang, Tiejun
    Wang, Chuanjun
    Li, Qiong
    Niu, Xiamu
    FOURTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2012), 2012, 8334