Inference of plasmid-copy-number mean and noise from single-cell gene expression data

被引:4
|
作者
Ghozzi, Stephane [1 ]
Ng, Jerome Wong [1 ]
Chatenay, Didier [2 ]
Robert, Jerome [2 ]
机构
[1] Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, CNRS,UPMC Univ Paris 06, F-75005 Paris, France
[2] CNRS UPMC, Lab Jean Perrin, FRE 3231, F-75005 Paris, France
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 05期
关键词
CHROMOSOME; DYNAMICS; REPLICATION;
D O I
10.1103/PhysRevE.82.051916
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasmids are extrachromosomal DNA molecules which code for their own replication. We previously reported a setup using genes coding for fluorescent proteins of two colors that allowed us, using a simple model, to extract the plasmid-copy-number noise in a monoclonal population of bacteria [J. Wong Ng et al., Phys. Rev. E 81, 011909 (2010)]. Here we present a detailed calculation relating this noise to the measured levels of fluorescence, taking into account all sources of fluorescence fluctuations: not only the fluctuation of gene expression as in the simple model but also the growth and division of bacteria, the nonuniform distribution of their ages, the random partition of proteins at divisions, and the replication and partition of plasmids and chromosome. We show how to use the chromosome as a reference, which helps extracting the plasmid-copy-number noise in a self-consistent manner.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data
    Li, Lingyu
    Sun, Liangjie
    Chen, Guangyi
    Wong, Chi-Wing
    Ching, Wai-Ki
    Liu, Zhi-Ping
    BIOINFORMATICS, 2023, 39 (05)
  • [22] Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions
    Shojaee, Abbas
    Huang, Shao-shan Carol
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [23] Putative cell type discovery from single-cell gene expression data
    Miao, Zhichao
    Moreno, Pablo
    Huang, Ni
    Papatheodorou, Irene
    Brazma, Alvis
    Teichmann, Sarah A.
    NATURE METHODS, 2020, 17 (06) : 621 - +
  • [24] Deconvolution of copy number alterations combining bulk and single-cell genomic data
    Lei, Haoyun
    Lyu, Bochuan
    Gertz, E. Michael
    Schaeffer, Alejandro A.
    Shi, Xulian
    Wu, Kui
    Li, Guibo
    Xu, Liqin
    Hou, Yong
    Dean, Michael
    Schwartz, Russell
    CANCER RESEARCH, 2019, 79 (13)
  • [25] Putative cell type discovery from single-cell gene expression data
    Zhichao Miao
    Pablo Moreno
    Ni Huang
    Irene Papatheodorou
    Alvis Brazma
    Sarah A. Teichmann
    Nature Methods, 2020, 17 : 621 - 628
  • [26] Tumor Copy Number Deconvolution Integrating Bulk and Single-Cell Sequencing Data
    Lei, Haoyun
    Lyu, Bochuan
    Gertz, E. Michael
    Schaffer, Alejandro A.
    Shi, Xulian
    Wu, Kui
    Li, Guibo
    Xu, Liqin
    Hou, Yong
    Dean, Michael
    Schwartz, Russell
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (04) : 565 - 598
  • [27] Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
    Aditya Pratapa
    Amogh P. Jalihal
    Jeffrey N. Law
    Aditya Bharadwaj
    T. M. Murali
    Nature Methods, 2020, 17 : 147 - 154
  • [28] Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
    Pratapa, Aditya
    Jalihal, Amogh P.
    Law, Jeffrey N.
    Bharadwaj, Aditya
    Murali, T. M.
    NATURE METHODS, 2020, 17 (02) : 147 - +
  • [29] Tree inference for single-cell data
    Jahn, Katharina
    Kuipers, Jack
    Beerenwinkel, Niko
    GENOME BIOLOGY, 2016, 17
  • [30] Tree inference for single-cell data
    Katharina Jahn
    Jack Kuipers
    Niko Beerenwinkel
    Genome Biology, 17