Inference of plasmid-copy-number mean and noise from single-cell gene expression data

被引:4
|
作者
Ghozzi, Stephane [1 ]
Ng, Jerome Wong [1 ]
Chatenay, Didier [2 ]
Robert, Jerome [2 ]
机构
[1] Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, CNRS,UPMC Univ Paris 06, F-75005 Paris, France
[2] CNRS UPMC, Lab Jean Perrin, FRE 3231, F-75005 Paris, France
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 05期
关键词
CHROMOSOME; DYNAMICS; REPLICATION;
D O I
10.1103/PhysRevE.82.051916
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasmids are extrachromosomal DNA molecules which code for their own replication. We previously reported a setup using genes coding for fluorescent proteins of two colors that allowed us, using a simple model, to extract the plasmid-copy-number noise in a monoclonal population of bacteria [J. Wong Ng et al., Phys. Rev. E 81, 011909 (2010)]. Here we present a detailed calculation relating this noise to the measured levels of fluorescence, taking into account all sources of fluorescence fluctuations: not only the fluctuation of gene expression as in the simple model but also the growth and division of bacteria, the nonuniform distribution of their ages, the random partition of proteins at divisions, and the replication and partition of plasmids and chromosome. We show how to use the chromosome as a reference, which helps extracting the plasmid-copy-number noise in a self-consistent manner.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Single-cell measurement of plasmid copy number and promoter activity
    Shao, Bin
    Rammohan, Jayan
    Anderson, Daniel A.
    Alperovich, Nina
    Ross, David
    Voigt, Christopher A.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Single-cell measurement of plasmid copy number and promoter activity
    Bin Shao
    Jayan Rammohan
    Daniel A. Anderson
    Nina Alperovich
    David Ross
    Christopher A. Voigt
    Nature Communications, 12
  • [3] A Novel Trajectory Inference Method on Single-Cell Gene Expression Data
    Tang, Daoxu
    Lu, Xinguo
    Jiang, Kaibao
    Sun, Fengxu
    Li, Jinxin
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 364 - 373
  • [4] Bayesian inference of gene expression states from single-cell RNA-seq data
    Breda, Jeremie
    Zavolan, Mihaela
    van Nimwegen, Erik
    NATURE BIOTECHNOLOGY, 2021, 39 (08) : 1008 - +
  • [5] Bayesian inference of gene expression states from single-cell RNA-seq data
    Jérémie Breda
    Mihaela Zavolan
    Erik van Nimwegen
    Nature Biotechnology, 2021, 39 : 1008 - 1016
  • [6] Single-cell copy number variation detection
    Cheng, Jiqiu
    Vanneste, Evelyne
    Konings, Peter
    Voet, Thierry
    Vermeesch, Joris R.
    Moreau, Yves
    GENOME BIOLOGY, 2011, 12 (08):
  • [7] Single-cell copy number variation detection
    Jiqiu Cheng
    Evelyne Vanneste
    Peter Konings
    Thierry Voet
    Joris R Vermeesch
    Yves Moreau
    Genome Biology, 12
  • [8] Privacy of single-cell gene expression data
    Cho, Hyunghoon
    PATTERNS, 2024, 5 (11):
  • [9] Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation
    Lenive, Oleg
    Kirk, Paul D. W.
    Stumpf, Michael P. H.
    BMC SYSTEMS BIOLOGY, 2016, 10
  • [10] Methods for copy number aberration detection from single-cell DNA-sequencing data
    Mallory, Xian F.
    Edrisi, Mohammadamin
    Navin, Nicholas
    Nakhleh, Luay
    GENOME BIOLOGY, 2020, 21 (01)