Secondary structure prediction with support vector machines

被引:164
|
作者
Ward, JJ [1 ]
McGuffin, LJ [1 ]
Buxton, BF [1 ]
Jones, DT [1 ]
机构
[1] UCL, Dept Comp Sci, Bioinformat Grp, London WC1E 6BT, England
关键词
D O I
10.1093/bioinformatics/btg223
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. Methods: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. Results: The average three-state prediction accuracy per protein (Q(3)) is estimated by cross-validation to be 77.07+/-0.26% with a segment overlap (Sov) score of 73.32+/-0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods.
引用
收藏
页码:1650 / 1655
页数:6
相关论文
共 50 条
  • [31] Componentwise support vector machines for structure detection
    Pelckmans, K
    Suykens, JAK
    De Moor, B
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 643 - 648
  • [32] Drug Likeness Prediction Using Structure Based Molecular Descriptors and Support Vector Machines
    Vinotha, G.
    Sundar, T. V.
    MATERIALS TODAY-PROCEEDINGS, 2019, 18 : 1658 - 1669
  • [33] Clustering support vector machines and its application to local protein tertiary structure prediction
    He, Jieyue
    Zhong, Wei
    Harrison, Robert
    Tai, Phang C.
    Pan, Yi
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 710 - 717
  • [34] Prediction performance of support vector machines on input vector normalization methods
    Kim, D
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (05) : 547 - 554
  • [35] Cardiovascular disease prediction using support vector machines
    Alty, SR
    Millasseau, SC
    Chowienczyk, PJ
    Jakobsson, A
    Proceedings of the 46th IEEE International Midwest Symposium on Circuits & Systems, Vols 1-3, 2003, : 376 - 379
  • [36] Support Vector Machines Approach to HMA Stiffness Prediction
    Gopalakrishnan, Kasthurirangan
    Kim, Sunghwan
    JOURNAL OF ENGINEERING MECHANICS, 2011, 137 (02) : 138 - 146
  • [37] Prediction of Ship Pitching Based on Support Vector Machines
    Sun Li-hong
    Shen Ji-hong
    2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND TECHNOLOGY, VOL I, PROCEEDINGS, 2009, : 379 - +
  • [38] Prediction of Activity Cliffs Using Support Vector Machines
    Heikamp, Kathrin
    Hu, Xiaoying
    Yan, Aixia
    Bajorath, Juergen
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (09) : 2354 - 2365
  • [39] Using support vector machines for time series prediction
    Thiessen, U
    van Brakel, R
    de Weijer, AP
    Melssen, WJ
    Buydens, LMC
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2003, 69 (1-2) : 35 - 49
  • [40] Active learning with support vector machines for tornado prediction
    Trafalis, Theodore B.
    Adrianto, Indra
    Richman, Michael B.
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 1130 - +