Turing pattern outside of the Turing domain

被引:5
|
作者
Flach, E. H.
Schnell, S.
Norbury, J.
机构
[1] Indiana Univ, Sch Informat, Complex Syst Grp, Bloomington, IN 47406 USA
[2] Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
关键词
reaction-diffusion; limit cycle; Schnakenberg; Turing pattern; convection;
D O I
10.1016/j.aml.2006.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two simple solutions to reaction-diffusion systems with limit-cycle reaction kinetics, producing oscillatory behaviour. The reaction parameter mu gives rise to a 'space-invariant' solution, and mu versus the ratio of the diffusion coefficients gives rise to a time-invariant' solution. We consider the case where both solution types may be possible. This leads to a refinement of the Turing model of pattern formation. We add convection to the system and investigate its effect. More complex solutions arise that appear to combine the two simple solutions. The convective system sheds light on the underlying behaviour of the diffusive system. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 963
页数:5
相关论文
共 50 条
  • [21] Turing
    Jorion, P
    HOMME, 2000, (153): : 251 - 267
  • [22] TURING PATTERN FORMATION IN THE BRUSSELATOR MODEL WITH SUPERDIFFUSION
    Golovin, A. A.
    Matkowsky, B. J.
    Volpert, V. A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (01) : 251 - 272
  • [23] DEPENDENCE OF TURING PATTERN WAVELENGTH ON DIFFUSION RATE
    QI, OY
    LI, RS
    LI, GE
    SWINNEY, HL
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (06): : 2551 - 2555
  • [24] Dynamics of Turing pattern monolayers close to onset
    Dufiet, V
    Boissonade, J
    PHYSICAL REVIEW E, 1996, 53 (05): : 4883 - 4892
  • [25] EFFECT OF TURING PATTERN INDICATORS ON CIMA OSCILLATORS
    NOSZTICZIUS, Z
    QI, OY
    MCCORMICK, WD
    SWINNEY, HL
    JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (15): : 6302 - 6307
  • [26] Control of Turing pattern by weak spatial perturbation
    Li, QS
    Ji, L
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (20): : 9690 - 9693
  • [27] Turing Instabilities are Not Enough to Ensure Pattern Formation
    Krause, Andrew L.
    Gaffney, Eamonn A.
    Jewell, Thomas Jun
    Klika, Vaclav
    Walker, Benjamin J.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2024, 86 (02)
  • [28] Turing pattern in the fractional Gierer–Meinhardt model
    王语
    张荣培
    王震
    韩子健
    Chinese Physics B, 2019, (05) : 61 - 67
  • [29] Control of Turing pattern formation by delayed feedback
    Li, QS
    Ji, L
    PHYSICAL REVIEW E, 2004, 69 (04): : 4
  • [30] Turing Instabilities are Not Enough to Ensure Pattern Formation
    Andrew L. Krause
    Eamonn A. Gaffney
    Thomas Jun Jewell
    Václav Klika
    Benjamin J. Walker
    Bulletin of Mathematical Biology, 2024, 86