Turing pattern outside of the Turing domain

被引:5
|
作者
Flach, E. H.
Schnell, S.
Norbury, J.
机构
[1] Indiana Univ, Sch Informat, Complex Syst Grp, Bloomington, IN 47406 USA
[2] Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
关键词
reaction-diffusion; limit cycle; Schnakenberg; Turing pattern; convection;
D O I
10.1016/j.aml.2006.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two simple solutions to reaction-diffusion systems with limit-cycle reaction kinetics, producing oscillatory behaviour. The reaction parameter mu gives rise to a 'space-invariant' solution, and mu versus the ratio of the diffusion coefficients gives rise to a time-invariant' solution. We consider the case where both solution types may be possible. This leads to a refinement of the Turing model of pattern formation. We add convection to the system and investigate its effect. More complex solutions arise that appear to combine the two simple solutions. The convective system sheds light on the underlying behaviour of the diffusive system. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 963
页数:5
相关论文
共 50 条
  • [1] Turing pattern with proportion preservation
    Ishihara, S
    Kaneko, K
    JOURNAL OF THEORETICAL BIOLOGY, 2006, 238 (03) : 683 - 693
  • [2] Turing pattern of the Oregonator model
    Peng, Rui
    Sun, Fuqin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2337 - 2345
  • [3] Oscillatory Turing Pattern Formation from the Interactions between Hopf and Turing Bifurcations
    Yang, Xiyan
    Qiu, Huahai
    Zhou, Tianshou
    CHINESE JOURNAL OF PHYSICS, 2015, 53 (03)
  • [4] Turing pattern formation in heterogeneous media
    Voroney, JP
    Lawniczak, AT
    Kapral, R
    PHYSICA D, 1996, 99 (2-3): : 303 - 317
  • [5] Dimensionality effects in Turing pattern formation
    Leppänen, T
    Karttunen, M
    Kaski, K
    Barrio, RA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (29): : 5541 - 5553
  • [6] Turing pattern formation in anisotropic medium
    Das, Debojyoti
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (03) : 818 - 831
  • [7] Pattern formation (II): The turing instability
    Guo, Yan
    Hwang, Hyung Ju
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2855 - 2866
  • [8] Precision and dissipation of a stochastic Turing pattern
    Rana, Shubhashis
    Barato, Andre C.
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [9] Turing pattern design principles and their robustness
    Vittadello, Sean T.
    Leyshon, Thomas
    Schnoerr, David
    Stumpf, Michael P. H.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2213):
  • [10] Pattern formation in quantum Turing machines
    Kim, I
    Mahler, G
    PHYSICAL REVIEW A, 1999, 60 (01): : 692 - 695