A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish

被引:148
|
作者
Varshney, Gaurav K. [1 ,2 ]
Carrington, Blake [3 ]
Pei, Wuhong [1 ]
Bishop, Kevin [3 ]
Chen, Zelin [1 ]
Fan, Chunxin [4 ]
Xu, Lisha [1 ]
Jones, Marypat [5 ]
LaFave, Matthew C. [1 ,7 ]
Ledin, Johan [6 ]
Sood, Raman [3 ]
Burgess, Shawn M. [1 ]
机构
[1] NHGRI, Dev Genom Sect, Translat & Funct Genom Branch, NIH, Bethesda, MD 20892 USA
[2] Oklahoma Med Res Fdn, Funct & Chem Genom Program, 825 NE 13th St, Oklahoma City, OK 73104 USA
[3] NHGRI, Zebrafish Core, Translat & Funct Genom Branch, NIH, Bethesda, MD 20892 USA
[4] Shanghai Ocean Univ, Minist Educ, Key Lab Explorat & Utilizat Aquat Genet Resource, Shanghai, Peoples R China
[5] NHGRI, Canc Genet & Comparat Genom Branch, NIH, Bethesda, MD 20892 USA
[6] Uppsala Univ, Sci Life Lab, Dept Organismal Biol, Uppsala, Sweden
[7] Synthet Genom, San Diego, CA USA
基金
美国国家卫生研究院;
关键词
ZINC-FINGER NUCLEASES; GENE-FUNCTION; IN-VIVO; SYSTEM; CRISPR-CAS9; SPECIFICITY; WIDE; CAS9; RESOURCE; SEQUENCE;
D O I
10.1038/nprot.2016.141
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The zebrafish is a popular model organism for studying development and disease, and genetically modified zebrafish provide an essential tool for functional genomic studies. Numerous publications have demonstrated the efficacy of gene targeting in zebrafish using CRISPR/Cas9, and they have included descriptions of a variety of tools and methods for guide RNA synthesis and mutant identification. However, most of the published techniques are not readily scalable to increase throughput. We recently described a CRISPR/Cas9-based high-throughput mutagenesis and phenotyping pipeline in zebrafish. Here, we present a complete workflow for this pipeline, including target selection; cloning-free single-guide RNA (sgRNA) synthesis; microinjection; validation of the target-specific activity of the sgRNAs; founder screening to identify germline-transmitting mutations by fluorescence PCR; determination of the exact lesion by Sanger or next-generation sequencing (including software for analysis); and genotyping in the F-1 or subsequent generations. Using these methods, sgRNAs can be evaluated in 3 d, zebrafish germline-transmitting mutations can be identified within 3 months and stable lines can be established within 6 months. Realistically, two researchers can target tens to hundreds of genes per year using this protocol.
引用
收藏
页码:2357 / 2375
页数:19
相关论文
共 50 条
  • [31] CRISPR/Cas9-mediated targeted chromosome elimination
    Zuo, Erwei
    Huo, Xiaona
    Yao, Xuan
    Hu, Xinde
    Sun, Yidi
    Yin, Jianhang
    He, Bingbing
    Wang, Xing
    Shi, Linyu
    Ping, Jie
    Wei, Yu
    Ying, Wenqin
    Wei, Wei
    Liu, Wenjia
    Tang, Cheng
    Li, Yixue
    Hu, Jiazhi
    Yang, Hui
    GENOME BIOLOGY, 2017, 18
  • [32] Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish
    Ota, Satoshi
    Taimatsu, Kiyohito
    Yanagi, Kanoko
    Namiki, Tomohiro
    Ohga, Rie
    Higashijima, Shin-ichi
    Kawahara, Atsuo
    SCIENTIFIC REPORTS, 2016, 6
  • [33] CRISPR/Cas9-Mediated Mutagenesis of RCO in Cardamine hirsuta
    Alvim Kamei, Claire Lessa
    Pieper, Bjorn
    Laurent, Stefan
    Tsiantis, Miltos
    Huijser, Peter
    PLANTS-BASEL, 2020, 9 (02):
  • [34] CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda
    Wang, Congke
    Zhao, Te
    Liu, Xiaolong
    Li, Tianliang
    He, Leiming
    Wang, Qinqin
    Wang, Li
    Zhou, Lin
    INSECTS, 2024, 15 (01)
  • [35] Development of a CRISPR/Cas9-mediated genetic tool for functional genomics of Bipolaris sorokiniana
    Poursafar, A.
    Leng, Y.
    Zhong, S.
    PHYTOPATHOLOGY, 2023, 113 (09)
  • [36] CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.)
    Janga, Madhusudhana R.
    Campbell, LeAnne M.
    Rathore, Keerti S.
    PLANT MOLECULAR BIOLOGY, 2017, 94 (4-5) : 349 - 360
  • [37] Targeted Mutagenesis of Guinea Pig Cytomegalovirus Using CRISPR/Cas9-Mediated Gene Editing
    Bierle, Craig J.
    Anderholm, Kaitlyn M.
    Ben Wang, Jian
    McVoy, Michael A.
    Schleiss, Mark R.
    JOURNAL OF VIROLOGY, 2016, 90 (15) : 6989 - 6998
  • [38] Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis
    Markert, Matthew J.
    Zhang, Ying
    Enuameh, Metewo S.
    Reppert, Steven M.
    Wolfe, Scot A.
    Merlin, Christine
    G3-GENES GENOMES GENETICS, 2016, 6 (04): : 905 - 915
  • [39] CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.)
    Madhusudhana R. Janga
    LeAnne M. Campbell
    Keerti S. Rathore
    Plant Molecular Biology, 2017, 94 : 349 - 360
  • [40] CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)
    Ren, Chong
    Liu, Xianju
    Zhang, Zhan
    Wang, Yi
    Duan, Wei
    Li, Shaohua
    Liang, Zhenchang
    SCIENTIFIC REPORTS, 2016, 6