Scattering theory and equation of state of a spherical two-dimensional Bose gas

被引:11
|
作者
Tononi, A. [1 ,2 ,3 ]
机构
[1] Univ Paris Saclay, LPTMS, CNRS, F-91405 Orsay, France
[2] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
[3] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
关键词
VORTEX;
D O I
10.1103/PhysRevA.105.023324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the scattering problem of identical bosonic particles confined on a spherical surface. At low scattering energies and for a radius much larger than the healing length, we express the contact interaction strength in terms of the s-wave scattering length. Adopting this relation, we are then able to regularize the zero-point energy of the spherical Bose gas and to obtain its equation of state, which includes the corrections due to the finite radius of the sphere and coincides with the flat-case result in the infinite-radius limit. We also provide a microscopic derivation of the superfluid density of the system, reproducing a result postulated in a previous work. Our results are relevant for modeling the ongoing microgravity experiments with two-dimensional bubble-trapped Bose-Einstein condensates.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Two-dimensional dynamics of expansion of a degenerate Bose gas
    Mazets, Igor E.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [42] Dynamical Symmetry and Breathers in a Two-Dimensional Bose Gas
    Saint-Jalm, R.
    Castilho, P. C. M.
    Le Cerf, E.
    Bakkali-Hassani, B.
    Ville, J. -L.
    Nascimbene, S.
    Beugnon, J.
    Dalibard, J.
    PHYSICAL REVIEW X, 2019, 9 (02):
  • [43] Two-dimensional supersolidity in a planar dipolar Bose gas
    Ripley, B. T. E.
    Baillie, D.
    Blakie, P. B.
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [44] Two-dimensional dilute Bose gas in the normal phase
    Pieri, P
    Strinati, GC
    Tifrea, I
    EUROPEAN PHYSICAL JOURNAL B, 2001, 22 (01): : 79 - 87
  • [45] Two-dimensional expansion of a condensed dense Bose gas
    Annibale, E. S.
    Gammal, A.
    Ziegler, K.
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 307 : 77 - 81
  • [46] Scattering theory below energy space for two-dimensional nonlinear Schrodinger equation
    Miao, Changxing
    Zheng, Jiqiang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (06)
  • [47] Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods
    Astrakharchik, G. E.
    Boronat, J.
    Casulleras, J.
    Kurbakov, I. L.
    Lozovik, Yu. E.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [48] Two-dimensional quantum theory of collective light scattering from Bose-Einstein condensates
    Piovella, N
    LASER PHYSICS, 2003, 13 (04) : 611 - 618
  • [49] Fermi–Bose Correspondence and Bose–Einstein Condensation in the Two-Dimensional Ideal Gas
    A. Swarup
    B. Cowan
    Journal of Low Temperature Physics, 2004, 134 : 881 - 895
  • [50] Dislocation scattering in a two-dimensional electron gas
    Jena, D
    Gossard, AC
    Mishra, UK
    APPLIED PHYSICS LETTERS, 2000, 76 (13) : 1707 - 1709