Majorization-Minimization mixture model determination in image segmentation

被引:0
|
作者
Sfikas, Giorgos [1 ]
Nikou, Christophoros [2 ]
Galatsanos, Nikolaos [3 ]
Heinrich, Christian [1 ]
机构
[1] Univ Strasbourg, LSIIT, CNRS, UMR ULP 7005, Strasbourg, France
[2] Univ Ioannina, Dept Comp Sci, Ioannina, Greece
[3] Univ Patras, Dept Elect & Comp Engn, Patras, Greece
来源
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2011年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new Bayesian model for image segmentation based on a Gaussian mixture model is proposed. The model structure allows the automatic determination of the number of segments while ensuring spatial smoothness of the final output. This is achieved by defining two separate mixture weight sets: the first set of weights is spatially variant and incorporates an MRF edge-preserving smoothing prior; the second set of weights is governed by a Dirichlet prior in order to prune unnecessary mixture components. The model is trained using variational inference and the Majorization-Minimization (MM) algorithm, resulting in closed-form parameter updates. The algorithm was successfully evaluated in terms of various segmentation indices using the Berkeley image data base.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Generalized Majorization-Minimization
    Naderi, Sobhan
    He, Kun
    Aghajani, Reza
    Sclaroff, Stan
    Felzenszwalb, Pedro
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [2] A BREGMAN MAJORIZATION-MINIMIZATION FRAMEWORK FOR PET IMAGE RECONSTRUCTION
    Rossignol, Claire
    Sureau, Florent
    Chouzenoux, Emilie
    Comtat, Claude
    Pesquet, Jean-Christophe
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1736 - 1740
  • [3] Majorization-Minimization for Manifold Embedding
    Yang, Zhirong
    Peltonen, Jaakko
    Kaski, Samuel
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 1088 - 1097
  • [4] The appeals of quadratic majorization-minimization
    Robini, Marc C.
    Wang, Lihui
    Zhu, Yuemin
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (03) : 509 - 558
  • [5] Adaptive total variation image deblurring: A majorization-minimization approach
    Oliveira, Joao P.
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    SIGNAL PROCESSING, 2009, 89 (09) : 1683 - 1693
  • [6] Majorization-minimization algorithms for wavelet-based image restoration
    Figueiredo, Mario A. T.
    Bioucas-Dias, Jose M.
    Nowak, Robert D.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2980 - 2991
  • [7] Composite Optimization by Nonconvex Majorization-Minimization
    Geiping, Jonas
    Moeller, Michael
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (04): : 2494 - 2528
  • [8] A Majorization-Minimization Algorithm for Neuroimage Registration
    Zhou, Gaiting
    Tward, Daniel
    Lange, Kenneth
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (01): : 273 - 300
  • [9] Majorization-minimization generalized Krylov subspace methods for - optimization applied to image restoration
    Huang, G.
    Lanza, A.
    Morigi, S.
    Reichel, L.
    Sgallari, F.
    BIT NUMERICAL MATHEMATICS, 2017, 57 (02) : 351 - 378
  • [10] SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm
    Chouzenoux, Emilie
    Fest, Jean-Baptiste
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 919 - 952