Initial solidification dynamics of spreading droplets

被引:16
|
作者
Koldeweij, Robin B. J. [1 ,2 ]
Kant, Pallav [1 ]
Harth, Kirsten [1 ,3 ]
de Ruiter, Rielle [4 ]
Gelderblom, Hanneke [5 ]
Snoeijer, Jacco H. [1 ]
Lohse, Detlef [1 ,6 ]
van Limbeek, Michiel A. J. [1 ,6 ]
机构
[1] Univ Twente, J M Burgers Ctr Fluid Dynam, Max Planck Ctr Twente Complex Fluid Dynam, Dept Sci & Technol,Phys Fluids Grp, NL-7500 AE Enschede, Netherlands
[2] TNO, Nano Instrumentat, NL-5612 AP Eindhoven, Netherlands
[3] Otto Guericke Univ Magdeburg, Inst Phys, D-39106 Magdeburg, Germany
[4] ASML, NL-5503 LA Veldhoven, Netherlands
[5] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[6] Dynam Complex Fluids Max Planck Inst Dynam & Sel, D-37077 Gottingen, Germany
关键词
NO PREFERENCE; NUCLEATION; DROPS; WATER; SURFACE; IMPACT;
D O I
10.1103/PhysRevFluids.6.L121601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When a droplet is brought in contact with an undercooled surface, it wets the substrate and solidifies at the same time. The interplay between the phase transition effects and the contact-line motion, leading to its arrest, remains poorly understood. Here we reveal the early solidification patterns and dynamics of spreading hexadecane droplets. Total internal reflection imaging is employed to temporally and spatially resolve the early solidification behavior. With this, we determine the conditions leading to the contact-line arrest. We quantify the overall nucleation behavior, i.e., the nucleation rate and the crystal growth speed and show its sensitivity to the applied undercooling of the substrate. We also show that for strong enough undercooling it is the rapid growth of the crystals which determines the eventual arrest of the spreading contact line. By combining the JohnsonMehl-Avrami-Kolmogorov nucleation theory and scaling relations for the spreading, we calculate the temporal evolution of the solid area fraction, which is in good agreement with our observations.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Spreading dynamics of droplets impacting on oscillating hydrophobic substrates
    Potnis, Aditya
    Saha, Abhishek
    JOURNAL OF FLUID MECHANICS, 2024, 988
  • [22] Thermally driven Marangoni effects on the spreading dynamics of droplets
    Moezzi, Mahsa
    Sajjadi, Mozhdeh
    Hejazi, S. Hossein
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2023, 159
  • [23] Spreading Dynamics of Water Droplets on a Completely Wetting Surface
    Bekele, Selemon
    Evans, Oliver G.
    Tsige, Mesfin
    Tsige, Mesfin (mtsige@uakron.edu), 1600, American Chemical Society (124): : 20109 - 20115
  • [24] SOLIDIFICATION OF DROPLETS
    TSAKIROPOULOS, P
    MATERIALS LETTERS, 1985, 3 (12) : 508 - 512
  • [25] Initial Spreading Kinetics of High-Viscosity Droplets on Anisotropic Surfaces
    Bliznyuk, Olesya
    Jansen, H. Patrick
    Kooij, E. Stefan
    Poelsema, Bene
    LANGMUIR, 2010, 26 (09) : 6328 - 6334
  • [26] Spreading and solidification of liquid metal droplets on a substrate: Experiment, analytical model and numerical simulation
    Predtechensky, MR
    Varlamov, YD
    Ul'yankin, SN
    1999 INTERNATIONAL SYMPOSIUM ON MICROELECTRONICS, PROCEEDINGS, 1999, 3906 : 166 - 171
  • [27] Effect of Interaction of Nanoparticles and Surfactants on the Spreading Dynamics of Sessile Droplets
    Harikrishnan, A. R.
    Dhar, Purbarun
    Gedupudi, Sateesh
    Das, Sarit K.
    LANGMUIR, 2017, 33 (43) : 12180 - 12192
  • [28] Experimental investigation of spreading dynamics of glycerol droplets on a heated surface
    Durubal, Merve
    Munck, Martijn
    Buist, Kay
    Kuipers, J. A. M.
    Baltussen, Maike
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
  • [29] Dynamics of spreading of impinged droplets on the curved-grooved surface
    Lad, V. N.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2017, 39 (10) : 3911 - 3918
  • [30] Dynamics of spreading of impinged droplets on the curved-grooved surface
    V. N. Lad
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39 : 3911 - 3918