Initial solidification dynamics of spreading droplets

被引:16
|
作者
Koldeweij, Robin B. J. [1 ,2 ]
Kant, Pallav [1 ]
Harth, Kirsten [1 ,3 ]
de Ruiter, Rielle [4 ]
Gelderblom, Hanneke [5 ]
Snoeijer, Jacco H. [1 ]
Lohse, Detlef [1 ,6 ]
van Limbeek, Michiel A. J. [1 ,6 ]
机构
[1] Univ Twente, J M Burgers Ctr Fluid Dynam, Max Planck Ctr Twente Complex Fluid Dynam, Dept Sci & Technol,Phys Fluids Grp, NL-7500 AE Enschede, Netherlands
[2] TNO, Nano Instrumentat, NL-5612 AP Eindhoven, Netherlands
[3] Otto Guericke Univ Magdeburg, Inst Phys, D-39106 Magdeburg, Germany
[4] ASML, NL-5503 LA Veldhoven, Netherlands
[5] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[6] Dynam Complex Fluids Max Planck Inst Dynam & Sel, D-37077 Gottingen, Germany
关键词
NO PREFERENCE; NUCLEATION; DROPS; WATER; SURFACE; IMPACT;
D O I
10.1103/PhysRevFluids.6.L121601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When a droplet is brought in contact with an undercooled surface, it wets the substrate and solidifies at the same time. The interplay between the phase transition effects and the contact-line motion, leading to its arrest, remains poorly understood. Here we reveal the early solidification patterns and dynamics of spreading hexadecane droplets. Total internal reflection imaging is employed to temporally and spatially resolve the early solidification behavior. With this, we determine the conditions leading to the contact-line arrest. We quantify the overall nucleation behavior, i.e., the nucleation rate and the crystal growth speed and show its sensitivity to the applied undercooling of the substrate. We also show that for strong enough undercooling it is the rapid growth of the crystals which determines the eventual arrest of the spreading contact line. By combining the JohnsonMehl-Avrami-Kolmogorov nucleation theory and scaling relations for the spreading, we calculate the temporal evolution of the solid area fraction, which is in good agreement with our observations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Spreading dynamics of functional droplets
    Li, Xin
    Hu, Yuanzhong
    Jiang, Lan
    APPLIED SURFACE SCIENCE, 2008, 255 (05) : 3336 - 3341
  • [2] Spreading dynamics of terraced droplets
    Betelú, S
    Law, BM
    Huang, CC
    PHYSICAL REVIEW E, 1999, 59 (06): : 6699 - 6707
  • [3] Dynamics of spreading thixotropic droplets
    Uppal, A. S.
    Craster, R. V.
    Matar, O. K.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2017, 240 : 1 - 14
  • [4] Spreading dynamics of water droplets
    Rieutord, F
    Rayssac, O
    Moriceau, H
    PHYSICAL REVIEW E, 2000, 62 (05): : 6861 - 6864
  • [5] Initial solidification of iron, nickel and steel droplets
    Todoroki, H
    Lertarom, R
    Suzuki, T
    Cramb, AW
    SOLIDIFICATION 1998, 1998, : 327 - 341
  • [6] Dynamics of spreading droplets revisited.
    Charlot, M
    Voué, M
    de Ruijter, MJ
    Oshanin, G
    De Coninck, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U414 - U414
  • [7] Investigation on the spreading and solidification of supercooled gallium droplets during impact
    Zhang, Chenglin
    Li, Lei
    Li, Zhaobing
    Chang, Hao
    Liu, Jing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 183
  • [8] Investigation on the spreading and solidification of supercooled gallium droplets during impact
    Zhang, Chenglin
    Li, Lei
    Li, Zhaobing
    Chang, Hao
    Liu, Jing
    International Journal of Heat and Mass Transfer, 2022, 183
  • [9] Spreading and solidification behavior of molten Si droplets impinging on substrates
    Nagashio, K
    Murata, H
    Kuribayashi, K
    ACTA MATERIALIA, 2004, 52 (18) : 5295 - 5301
  • [10] Dynamics of films and droplets spreading on porous substrates
    University Erlangen-Nürnberg, Erlangen, Germany
    Tappi J., 2007, 3 (16-23):