Fatigue resistance of nanotwinned high-entropy alloy films

被引:30
|
作者
Huo, Wenyi [1 ]
Fang, Feng [1 ]
Liu, Xiaodong [1 ]
Tan, Shuyong [2 ]
Xie, Zonghan [3 ]
Jiang, Jianqing [1 ]
机构
[1] Southeast Univ, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Jiangsu, Peoples R China
[2] Nanjing Inst Technol, Sch Mat Sci & Engn, Nanjing 211167, Jiangsu, Peoples R China
[3] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
High-entropy alloy; Nanocrystalline; Nanotwins; Nanotwinned films; Nanofatigue; ULTRAHIGH STRENGTH; CUTTING TOOLS; BEHAVIOR; MECHANISMS; NANOINDENTATION; BOUNDARIES; COATINGS; FAILURE; TIALN;
D O I
10.1016/j.msea.2018.09.112
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanotwinned nanocrystalline CoCrFeNi high-entropy alloy films were prepared by magnetron sputtering. A disordered face-centered cubic structure was identified, with a uniform distribution of chemical elements. Both <1 1 0> out-of-plane and <1 1 1> in-plane textures were also observed in the nanotwinned film with a thickness of 2.98 mu m. The fatigue resistance of the films was analyzed by nanoindentation technique with up to 103 cycles under various impact energies, complemented by post-test atomic force microscopy investigation of indentation craters. Unlike coarse-grained samples, the nanotwinned films exhibited excellent fatigue resistance, characterized by history-independent and near-stable fatigue responses. Under the influence of the textures developed in the films, the nanotwin planes were oriented toward the loading direction under each fatigue cycle. As such, extremely stable correlated necklace dislocations structure formed and moved back and forth along the twin boundaries during cyclic loading, which preserved the slip systems as well as the coherency and stability of twin boundaries.
引用
下载
收藏
页码:26 / 30
页数:5
相关论文
共 50 条
  • [31] CoCrFeMnNi High-Entropy Alloy Thin Films Electrodeposited on Aluminum Support
    Popescu, Ana-Maria Julieta
    Branzoi, Florina
    Burada, Marian
    Moreno, Jose Calderon
    Anastasescu, Mihai
    Anasiei, Ioana
    Olaru, Mihai Tudor
    Constantin, Virgil
    COATINGS, 2023, 13 (06)
  • [32] Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition
    Cropper, M. D.
    APPLIED SURFACE SCIENCE, 2018, 455 : 153 - 159
  • [33] Fatigue dataset of high-entropy alloys
    Shiyi Chen
    Xuesong Fan
    Baldur Steingrimsson
    Qingang Xiong
    Weidong Li
    Peter K. Liaw
    Scientific Data, 9
  • [34] Effect of He on the irradiation resistance of equiatomic CoCrFeMnNi high-entropy alloy
    Huang, S. S.
    Guan, H. Q.
    Zhong, Z. H.
    Miyamoto, M.
    Xu, Q.
    JOURNAL OF NUCLEAR MATERIALS, 2022, 561
  • [35] An Overview on Fatigue of High-Entropy Alloys
    Hu, Junchao
    Li, Xue
    Zhao, Qiuchen
    Chen, Yangrui
    Yang, Kun
    Wang, Qingyuan
    MATERIALS, 2023, 16 (24)
  • [36] Review on wear resistance of laser cladding high-entropy alloy coatings
    Xiang, Dingding
    Liu, Yusheng
    Yu, Tianbiao
    Wang, Di
    Leng, Xiaoxin
    Wang, Kaiming
    Liu, Lin
    Pan, Jie
    Yao, Sun
    Chen, Zibin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 911 - 934
  • [37] Low cycle fatigue properties of CoCrFeNiMn high-entropy alloy with heterogeneous microstructure
    Shahmir, Hamed
    Saeedpour, Parham
    Mehranpour, Mohammad Sajad
    Shams, Amirarsalan
    Lee, Chong Soo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 912
  • [38] Fatigue Crack Growth Behavior and Associated Microstructure in a Metastable High-Entropy Alloy
    Eguchi, Takeshi
    Koyama, Motomichi
    Fukushima, Yoshihiro
    Tasan, Cemal Cem
    Tsuzaki, Kaneaki
    ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 : 831 - 836
  • [39] Wear-Resistance of High-Entropy Alloy Coatings and High-Entropy Alloy-Based Composite Coatings Prepared by the Laser Cladding Technology: A Review
    Xie, Haoyang
    Tong, Yanlin
    Bai, Yixuan
    Li, Xiaolin
    Han, Yinben
    Hua, Ke
    Wang, Haifeng
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (21)
  • [40] Discovery of a Superconducting High-Entropy Alloy
    Kozelj, P.
    Vrtnik, S.
    Jelen, A.
    Jazbec, S.
    Jaglicic, Z.
    Maiti, S.
    Feuerbacher, M.
    Steurer, W.
    Dolinsek, J.
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)