A continuous Newton-type method for unconstrained optimization

被引:0
|
作者
Zhang, Lei-Hong [2 ]
Kelley, C. T. [1 ]
Liao, Li-Zhi [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2008年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
unconstrained optimization; continuous method; ODE method; global convergence; pseudo-transient continuation;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a continuous Newton-type method in the form of an ordinary differential equation by combining the negative gradient and the Newton direction. We show that for a general function f(x) our method converges globally to a connected subset of the stationary points of f(x) under some mild conditions, and converges globally to a single stationary point for a real analytic function. The method reduces to the exact continuous Newton method if the Hessian matrix of f(x) is uniformly positive definite. We report on convergence of the new method on the set of standard test problems in the literature.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 50 条
  • [31] A nonmonotone inexact Newton method for unconstrained optimization
    Huan Gao
    Hai-Bin Zhang
    Zhi-Bao Li
    Emmanuel Tadjouddine
    Optimization Letters, 2017, 11 : 947 - 965
  • [32] Regularized Newton method for unconstrained convex optimization
    Roman A. Polyak
    Mathematical Programming, 2009, 120 : 125 - 145
  • [33] A nonmonotone inexact Newton method for unconstrained optimization
    Gao, Huan
    Zhang, Hai-Bin
    Li, Zhi-Bao
    Tadjouddine, Emmanuel
    OPTIMIZATION LETTERS, 2017, 11 (05) : 947 - 965
  • [34] Newton-type methods for constrained optimization with nonregular constraints
    Golishnikov M.M.
    Izmailov A.F.
    Computational Mathematics and Mathematical Physics, 2006, 46 (8) : 1299 - 1319
  • [35] Newton-Type Alternating Minimization Algorithm for Convex Optimization
    Stella, Lorenzo
    Themelis, Andreas
    Patrinos, Panagiotis
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) : 697 - 711
  • [36] Globally convergent Newton-type methods for multiobjective optimization
    M. L. N. Gonçalves
    F. S. Lima
    L. F. Prudente
    Computational Optimization and Applications, 2022, 83 : 403 - 434
  • [37] Globally convergent Newton-type methods for multiobjective optimization
    Goncalves, M. L. N.
    Lima, F. S.
    Prudente, L. F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (02) : 403 - 434
  • [38] On the Analysis of Semismooth Newton-Type Methods for Composite Optimization
    Jiang Hu
    Tonghua Tian
    Shaohua Pan
    Zaiwen Wen
    Journal of Scientific Computing, 2025, 103 (2)
  • [39] Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments
    Fischer, Andreas
    Zemkoho, Alain B.
    Zhou, Shenglong
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05): : 1770 - 1804
  • [40] Primal-Dual Newton-Type Interior-Point Method for Topology Optimization
    R.H.W. Hoppe
    S.I. Petrova
    V. Schulz
    Journal of Optimization Theory and Applications, 2002, 114 : 545 - 571