Improved smoothing Newton methods for symmetric cone complementarity problems

被引:9
|
作者
Li, Yuan Min [1 ]
Wang, Xing Tao [1 ]
Wei, De Yun [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Tunable Laser Technol, Harbin 150001, Peoples R China
关键词
Symmetric cone; Complementarity problem; Smoothing Newton method; Smoothing functions; Euclidean Jordan algebra; INTERIOR-POINT ALGORITHMS; EUCLIDEAN JORDAN ALGEBRAS; P-PROPERTIES; TRANSFORMATIONS; INEQUALITIES;
D O I
10.1007/s11590-010-0274-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
There recently has been much interest in smoothing Newton method for solving nonlinear complementarity problems. We extend such method to symmetric cone complementarity problems (SCCP). In this paper, we first investigate a one-parametric class of smoothing functions in the context of symmetric cones, which contains the Fischer-Burmeister smoothing function and the CHKS smoothing function as special cases. Then we propose a smoothing Newton method for the SCCP based on the one-parametric class of smoothing functions. For the proposed method, besides the classical step length, we provide a new step length and the global convergence is obtained. Finally, preliminary numerical results are reported, which show the effectiveness of the two step lengthes in the algorithm and provide efficient domains of the parameter for the complementarity problems.
引用
收藏
页码:471 / 487
页数:17
相关论文
共 50 条
  • [41] A smoothing Newton method for general nonlinear complementarity problems
    Qi, HD
    Liao, LZ
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) : 231 - 253
  • [42] A SMOOTHING NEWTON METHOD FOR TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS
    Hu, Wenyu
    Lu, Laishui
    Yin, Cheng
    Yu, Gaohang
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 243 - 253
  • [43] Smoothing Methods for Nonlinear Complementarity Problems
    Haddou, Mounir
    Maheux, Patrick
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (03) : 711 - 729
  • [44] A new nonmonotone smoothing Newton method for the symmetric cone complementarity problem with the Cartesian P0-property
    Liu, Xiangjing
    Liu, Sanyang
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (02) : 229 - 247
  • [45] Smoothing Methods for Nonlinear Complementarity Problems
    Mounir Haddou
    Patrick Maheux
    [J]. Journal of Optimization Theory and Applications, 2014, 160 : 711 - 729
  • [46] NEW SMOOTHING MERIT FUNCTION FOR SYMMETRIC CONE COMPLEMENTARITY PROBLEM
    Sun, Guo
    Zhang, Peng
    Yu, Liying
    Lin, Gui-Hua
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (04): : 577 - 593
  • [47] Smoothing method for mathematical programs with symmetric cone complementarity constraints
    Yan, Tao
    Fukushima, Masao
    [J]. OPTIMIZATION, 2011, 60 (1-2) : 113 - 128
  • [48] A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
    Narushima, Yasushi
    Sagara, Nobuko
    Ogasawara, Hideho
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (01) : 79 - 101
  • [49] A smoothing quasi-Newton method for solving general second-order cone complementarity problems
    Tang, Jingyong
    Zhou, Jinchuan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (02) : 415 - 438
  • [50] A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
    Yasushi Narushima
    Nobuko Sagara
    Hideho Ogasawara
    [J]. Journal of Optimization Theory and Applications, 2011, 149 : 79 - 101