Improved smoothing Newton methods for symmetric cone complementarity problems

被引:9
|
作者
Li, Yuan Min [1 ]
Wang, Xing Tao [1 ]
Wei, De Yun [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Tunable Laser Technol, Harbin 150001, Peoples R China
关键词
Symmetric cone; Complementarity problem; Smoothing Newton method; Smoothing functions; Euclidean Jordan algebra; INTERIOR-POINT ALGORITHMS; EUCLIDEAN JORDAN ALGEBRAS; P-PROPERTIES; TRANSFORMATIONS; INEQUALITIES;
D O I
10.1007/s11590-010-0274-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
There recently has been much interest in smoothing Newton method for solving nonlinear complementarity problems. We extend such method to symmetric cone complementarity problems (SCCP). In this paper, we first investigate a one-parametric class of smoothing functions in the context of symmetric cones, which contains the Fischer-Burmeister smoothing function and the CHKS smoothing function as special cases. Then we propose a smoothing Newton method for the SCCP based on the one-parametric class of smoothing functions. For the proposed method, besides the classical step length, we provide a new step length and the global convergence is obtained. Finally, preliminary numerical results are reported, which show the effectiveness of the two step lengthes in the algorithm and provide efficient domains of the parameter for the complementarity problems.
引用
收藏
页码:471 / 487
页数:17
相关论文
共 50 条
  • [1] Improved smoothing Newton methods for symmetric cone complementarity problems
    Yuan Min Li
    Xing Tao Wang
    De Yun Wei
    [J]. Optimization Letters, 2012, 6 : 471 - 487
  • [2] A smoothing Newton method for symmetric cone complementarity problems
    Jia Tang
    Changfeng Ma
    [J]. Optimization Letters, 2015, 9 : 225 - 244
  • [3] A smoothing Newton method for symmetric cone complementarity problems
    Tang, Jia
    Ma, Changfeng
    [J]. OPTIMIZATION LETTERS, 2015, 9 (02) : 225 - 244
  • [4] A New Smoothing Newton Method for Symmetric Cone Complementarity Problems
    Liu, Lixia
    Liu, Sanyang
    [J]. ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2010, 6124 : 199 - 208
  • [5] A REGULARIZED SMOOTHING NEWTON METHOD FOR SYMMETRIC CONE COMPLEMENTARITY PROBLEMS
    Kong, Lingchen
    Sun, Jie
    Xiu, Naihua
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) : 1028 - 1047
  • [6] A predictor-corrector smoothing Newton method for symmetric cone complementarity problems
    Liu, Lixia
    Liu, Sanyang
    Liu, Hongwei
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 2989 - 2999
  • [7] A smoothing Newton method for symmetric cone complementarity problem
    Liu L.
    Liu S.
    Wu Y.
    [J]. Journal of Applied Mathematics and Computing, 2015, 47 (1-2) : 175 - 191
  • [8] Sub-quadratic convergence of a smoothing Newton method for symmetric cone complementarity problems
    He, Yanling
    Lau, Chunyan
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 3082 - 3087
  • [9] A generalized smoothing Newton method for the symmetric cone complementarity problem
    Li, Yuan-Min
    Wei, Deyun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 335 - 345
  • [10] Smoothing Newton algorithm for symmetric cone complementarity problems based on a one-parametric class of smoothing functions
    Ni T.
    Gu W.-Z.
    [J]. Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 73 - 92