Subpixel anomalous change detection in remote sensing imagery

被引:9
|
作者
Theiler, James [1 ]
机构
[1] Los Alamos Natl Lab, Space & Remote Sensing Sci, Los Alamos, NM 87545 USA
关键词
D O I
10.1109/SSIAI.2008.4512311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A machine-learning framework for anomalous change detection is extended to the situation in which the anomalous change is smaller than a pixel. Although the existing framework can. be applied to (and does have power against) the subpixel case, it is possible to optimize that framework for the subpixel case when the size of the anomalous change is known. The limit of inLntesimally small anomaly turns out to be well deLned, and provides a new parameter-free anomalous change detector which is effective over a range of subpixel anomalies, and continues to have reasonable power against the full-pixel case.
引用
收藏
页码:165 / 168
页数:4
相关论文
共 50 条
  • [21] NOVELTY DETECTION IN REMOTE SENSING IMAGERY
    Du, Dawei
    Funk, Christopher
    Hoogs, Anthony
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5325 - 5328
  • [22] Frequency-Temporal Attention Network for Remote Sensing Imagery Change Detection
    Yu, Chunyan
    Li, Haobo
    Hu, Yabin
    Zhang, Qiang
    Song, Meiping
    Wang, Yulei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [23] Evaluation of clustering algorithms for unsupervised change detection in VHR remote sensing imagery
    Leichtle, Tobias
    Geiss, Christian
    Wurm, Michael
    Lakes, Tobia
    Taubenboeck, Hannes
    2017 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2017,
  • [24] Using Adversarial Network for Multiple Change Detection in Bitemporal Remote Sensing Imagery
    Zhao, Wenzhi
    Chen, Xi
    Ge, Xiaoshan
    Chen, Jiage
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] The geographic object-based method for change detection with remote sensing imagery
    Dian, Yuanyong, 1600, Editorial Board of Medical Journal of Wuhan University (39):
  • [26] A review of multi-class change detection for satellite remote sensing imagery
    Zhu, Qiqi
    Guo, Xi
    Li, Ziqi
    Li, Deren
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (01) : 1 - 15
  • [27] Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection
    Padron-Hidalgo, Jose Antonio
    Perez-Suay, Adrian
    Nar, Fatih
    Laparra, Valero
    Camps-Valls, Gustau
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5480 - 5488
  • [28] Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery
    Zheng, Zhuo
    Ma, Ailong
    Zhang, Liangpei
    Zhong, Yanfei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15173 - 15182
  • [29] Research on Change Detection Method of High-Resolution Remote Sensing Images Based on Subpixel Convolution
    Luo, Xin
    Li, Xiaoxi
    Wu, Yuxuan
    Hou, Weimin
    Wang, Meng
    Jin, Yuwei
    Xu, Wenbo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 1447 - 1457
  • [30] SPARSE REPRESENTATION BASED SUBPIXEL INFORMATION EXTRACTION FRAMEWORK FOR HYPERSPECTRAL REMOTE SENSING IMAGERY
    Feng, Ruyi
    He, Da
    Zhong, Yanfei
    Zhang, Liangpei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7026 - 7029