Exploring sheath blight quantitative trait loci in a Lemont/O. meridionalis advanced backcross population

被引:12
|
作者
Eizenga, G. C. [1 ]
Jia, M. H. [1 ]
Pinson, S. R. [1 ]
Gasore, E. R. [2 ]
Prasad, B. [2 ]
机构
[1] USDA ARS, Dale Bumpers Natl Rice Res Ctr, Stuttgart, AR 72160 USA
[2] Univ Arkansas, Rice Res & Extens Ctr, Stuttgart, AR 72160 USA
关键词
Oryza sativa; Rhizoctonia solani; Advanced backcross; QTL mapping; Asian rice; Oryza meridionalis; Sheath blight; RICE GERMPLASM LINES; YIELD-RELATED TRAITS; PHYLOGENETIC-RELATIONSHIPS; DISEASE RESISTANCE; ORYZA-RUFIPOGON; JAPONICA RICE; QTL-ANALYSIS; GENUS ORYZA; SEGREGATION DISTORTION; CONFERRING RESISTANCE;
D O I
10.1007/s11032-015-0332-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Oryza meridionalis is the wild Oryza species endemic to Australia. There are eight AA-genome Oryza species, one of which is cultivated rice, O. sativa, and O. meridionalis is the most genetically distant one. An O. meridionalis (IRGC105608) accession, previously identified as being moderately resistant to rice sheath blight (ShB) disease, was used as the donor parent to develop an advanced backcross population with the US semidwarf rice cultivar, Lemont, as the recurrent parent. The population was genotyped with 113 DNA markers and a linkage map constructed that spanned 1234.5 cM. ShB disease was evaluated in both greenhouse and field conditions. Days to heading (DH), plant height (PH) and culm angle (CA) were recorded because they can confound ShB disease ratings under field conditions. Multiple interval mapping identified qShB9-2 as the ShB-QTL most consistently effective across the generations and variable evaluation environments, with resistance to ShB disease attributed to the O. meridionalis allele in all cases. No QTL for any of the potentially confounding traits was identified in this region of chromosome9 of this cross. Lemont was found to contribute the desirable alleles that decreased the DH on chromosome 8 and PH on chromosome 1, in part due to the semidwarf gene, sd1, for short plant stature. No CA-QTL was identified due to the lack of segregation for this trait, especially in the advanced backcross generations. Further studies will be undertaken to fine map the qShB9-2 region and identify linked markers for use in cultivar development.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.)
    Herrmann, Matthias H.
    Yu, Jianzhong
    Beuch, Steffen
    Weber, Wilhelm E.
    PLANT BREEDING, 2014, 133 (05) : 588 - 601
  • [42] Quantitative trait loci on LGs 9 and 14 affect the reproductive interaction between two Oreochromis species, O. niloticus and O. aureus
    Andrey Shirak
    Tatyana Zak
    Lior Dor
    Ayana Benet-Perlberg
    Joel I. Weller
    Micha Ron
    Eyal Seroussi
    Heredity, 2019, 122 : 341 - 353
  • [43] Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations
    Jiang, Gonghao
    Zeng, Jing
    He, Yuqing
    GENE, 2014, 536 (02) : 287 - 295
  • [44] Quantitative trait loci on LGs 9 and 14 affect the reproductive interaction between two Oreochromis species, O. niloticus and O. aureus
    Shirak, Andrey
    Zak, Tatyana
    Dor, Lior
    Benet-Perlberg, Ayana
    Weller, Joel, I
    Ron, Micha
    Seroussi, Eyal
    HEREDITY, 2019, 122 (03) : 341 - 353
  • [45] QUANTITATIVE TRAIT LOCI (QTL) LINKED TO COMPACTNESS IN AN INTERSPECIFIC BACKCROSS TWO (BC2) POPULATION OF OIL PALM
    Zulkifli, Y.
    Rajinder, S.
    Ting, N. C.
    Marhalil, M.
    Xaviar, A.
    Rajanaidu, N.
    Jansen, I
    Din, Mohd A.
    Ong-Abdullah, M.
    Chie, T. Y.
    Kushairi, A.
    JOURNAL OF OIL PALM RESEARCH, 2020, 32 (02): : 201 - 210
  • [46] Identification of quantitative trait loci affecting resistance to gastrointestinal parasites in a double backcross population of Red Maasai and Dorper sheep
    Silva, M. V. B.
    Sonstegard, T. S.
    Hanotte, O.
    Mugambi, J. M.
    Garcia, J. F.
    Nagda, S.
    Gibson, J. P.
    Iraqi, F. A.
    McClintock, A. E.
    Kemp, S. J.
    Boettcher, P. J.
    Malek, M.
    Van Tassell, C. P.
    Baker, R. L.
    ANIMAL GENETICS, 2012, 43 (01) : 63 - 71
  • [47] Mapping quantitative trait loci of Meloidogyne graminicola resistance and tolerance in a recombinant inbred line population of Oryza glaberrima x O. sativa
    Galeng Lawilao, Judith
    Mallikarjuna Swamy, B. P.
    Kumar, Arvind
    Nadong Cabasan, Ma. Teodora
    De Waele, Dirk
    NEMATOLOGY, 2019, 21 (04) : 401 - 417
  • [48] CHARACTERIZATION OF QUANTITATIVE TRAIT LOCI (QTLS) IN CULTIVATED RICE CONTRIBUTING TO FIELD-RESISTANCE TO SHEATH BLIGHT (RHIZOCTONIA-SOLANI)
    LI, ZK
    PINSON, SRM
    MARCHETTI, MA
    STANSEL, JW
    PARK, WD
    THEORETICAL AND APPLIED GENETICS, 1995, 91 (02) : 382 - 388
  • [49] Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze)
    Kamunya, S. M.
    Wachira, F. N.
    Pathak, R. S.
    Korir, R.
    Sharma, V.
    Kumar, R.
    Bhardwaj, P.
    Chalo, R.
    Ahuja, P. S.
    Sharma, R. K.
    TREE GENETICS & GENOMES, 2010, 6 (06) : 915 - 929
  • [50] Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze)
    S. M. Kamunya
    F. N. Wachira
    R. S. Pathak
    R. Korir
    V. Sharma
    R. Kumar
    P. Bhardwaj
    R. Chalo
    P. S. Ahuja
    R. K. Sharma
    Tree Genetics & Genomes, 2010, 6 : 915 - 929