Scattering of solitons for coupled wave-particle equations

被引:9
|
作者
Imaykin, Valery [1 ]
Komech, Alexander [2 ,3 ]
Vainberg, Boris [4 ]
机构
[1] Tech Univ Munich, Fac Math, D-85747 Garching, Germany
[2] Univ Vienna, Fac Math, A-1010 Vienna, Austria
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[4] UNC Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
基金
美国国家科学基金会;
关键词
Infinite-dimensional Hamiltonian system; Field-particle interaction; Solitary manifold; Soliton-type asymptotics; Symplectic projection; Linearization; MULTICHANNEL NONLINEAR SCATTERING; ASYMPTOTIC STABILITY; SCHRODINGER-EQUATIONS; SOLITARY WAVES; GROUND-STATES; INSTABILITY; FIELD;
D O I
10.1016/j.jmaa.2011.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a long time soliton asymptotics for a nonlinear system of wave equation coupled to a charged particle. The coupled system has a six-dimensional manifold of soliton solutions. We show that in the large time approximation, any solution, with an initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution to the free wave equation. It is assumed that the charge density satisfies Wiener condition which is a version of Fermi Golden Rule, and that the momenta of the charge distribution vanish up to the fourth order. The proof is based on a development of the general strategy introduced by Buslaev and Perelman: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:713 / 740
页数:28
相关论文
共 50 条
  • [21] WAVE-PARTICLE DUALITY
    REDHEAD, MLG
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 1977, 28 (01): : 65 - 73
  • [22] The wave-particle duality
    Bitsakis, E
    PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT: PROCEEDINGS OF A SYMPOSIUM IN HONOUR OF JEAN-PIERRE VIGIER, 1997, 80 : 333 - 348
  • [23] WAVE-PARTICLE DUALITY
    OMNES, R
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1988, 49 (03): : 351 - 354
  • [24] Wave-particle superposition
    Adesso, Gerardo
    Girolami, Davide
    NATURE PHOTONICS, 2012, 6 (09) : 579 - 580
  • [25] Electromagnetic proton cyclotron anisotropy instability: Wave-particle scattering rate
    Gary, SP
    Yin, L
    Winske, D
    GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (16) : 2457 - 2459
  • [26] Proposed experimental study of wave-particle duality in p,p scattering
    Talman, Richard M.
    19TH WORKSHOP ON POLARIZED SOURCES, TARGETS AND POLARIMETRY, 2023,
  • [27] Significance of Wave-Particle Interaction Analyzer for direct measurements of nonlinear wave-particle interactions
    Katoh, Y.
    Kitahara, M.
    Kojima, H.
    Omura, Y.
    Kasahara, S.
    Hirahara, M.
    Miyoshi, Y.
    Seki, K.
    Asamura, K.
    Takashima, T.
    Ono, T.
    ANNALES GEOPHYSICAE, 2013, 31 (03) : 503 - 512
  • [28] On scattering of solitons for the Klein-Gordon equation coupled to a particle
    Imaikin, Valery
    Komech, Alexander
    Vainberg, Boris
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (02) : 321 - 367
  • [29] CONVECTION AND WAVE-PARTICLE INTERACTIONS
    SOLOMON, J
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1976, 57 (09): : 665 - 665
  • [30] CONVECTION AND WAVE-PARTICLE INTERACTIONS
    SOLOMON, J
    PELLAT, R
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1978, 40 (03): : 373 - 378