Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors with Complimentary Absorption and Balanced Crystallinity

被引:24
|
作者
Xie, Lan [1 ,2 ]
Yang, Chen [1 ,2 ]
Zhou, Ruimin [1 ,2 ,3 ]
Wang, Zhen [1 ,2 ]
Zhang, Jianqi [1 ]
Lu, Kun [1 ]
Wei, Zhixiang [1 ,2 ,3 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sino Danish Coll, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Organic solar cells; Donor-acceptor system; Ternary; Crystallinity; Energy conversion; EFFICIENCY; DONORS; LAYER;
D O I
10.1002/cjoc.201900554
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
.Summary of main observation and conclusion The ternary blend structure has been demonstrated as an effective approach to increase the power conversion efficiency of organic solar cells. An effective approach to enhance the power conversion efficiency of ternary solar cells is based on two non-fullerene acceptors with complimentary absorption range and balanced crystallinity. In this work, we have introduced a high crystallinity small-molecule acceptor, named C8IDTT-4Cl with appropriate alkyl side chains into a low crystalline blend of conjugated polymer donor PBDT-TPD and fused-ring electron acceptor ITIC-4F. A ternary device based on the blend PBDT-TPD:ITIC-4F:C8IDTT-4Cl exhibits a best power conversion efficiency of 9.51% with a simultaneous improvement of the short-circuit current density to 18.76 mA center dot cm(-2) and the fill factor up to 67.53%. The absorption onset for C8IDTT-4Cl is located at 900 nm, so that the well complementary light absorption is beneficial to the photocurrent. In addition, the existence of high crystallinity C8IDTT-4Cl in the ternary device is found helpful to modulate crystallinity, improve heterojunction morphologies and stacking structure, therefore to realize higher charge mobility and better performance.
引用
收藏
页码:935 / 940
页数:6
相关论文
共 50 条
  • [41] Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells
    Zhan, Lingling
    Li, Shuixing
    Zhang, Shuhua
    Chen, Xingzhi
    Lau, Tsz-Ki
    Lu, Xinhui
    Shi, Minmin
    Li, Chang-Zhi
    Chen, Hongzheng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 42444 - 42452
  • [42] Strategies for High Current Densities in Non-Fullerene Acceptors based Organic Solar Cells
    Song, Xin
    Troughton, Joel
    Gasparini, Nicola
    Baran, Derya
    ORGANIC ELECTRONICS AND PHOTONICS: FUNDAMENTALS AND DEVICES, 2018, 10687
  • [43] Recent progress in organic solar cells based on non-fullerene acceptors: materials to devices
    Luo, Dou
    Jang, Woongsik
    Babu, Dickson D.
    Kim, Min Soo
    Wang, Dong Hwan
    Kyaw, Aung Ko Ko
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3255 - 3295
  • [44] Dithienonaphthalene-Based Non-fullerene Acceptors With Different Bandgaps for Organic Solar Cells
    Zhang, Meiqi
    Ma, Yunlong
    Zheng, Qingdong
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [45] Trends in the electronic and geometric structure of non-fullerene based acceptors for organic solar cells
    Kuzmich, Alina
    Padula, Daniele
    Ma, Haibo
    Troisi, Alessandro
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) : 395 - 401
  • [46] Fused or unfused? Two-dimensional non-fullerene acceptors for efficient organic solar cells
    Liu, Dongxue
    Wang, Ting
    Chang, Zhitao
    Zheng, Nan
    Xie, Zengqi
    Liu, Yongsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (04) : 2319 - 2324
  • [47] Non-fullerene based acceptors for organic photovoltaics
    Robertson, Neil
    Planells, Miquel
    Durrant, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [48] Dicyclopentadithienothiophene-based non-fullerene acceptors for ternary blend organic photovoltaics
    Afraj, Shakil N.
    Jiang, Bing-Huang
    Su, Yu-Wei
    Yang, Chien-Hung
    Shih, Hui-Shan
    Velusamy, Arulmozhi
    Ni, Jen-Shyang
    Ezhumalai, Yamuna
    Su, Ting-Yu
    Liu, Cheng-Liang
    Yau, Shuhelin
    Chen, Chih-Ping
    Chen, Ming-Chou
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (06) : 2247 - 2257
  • [49] Tuning the absorption and optoelectronic properties of naphthalene diimide based solar cells with non-fullerene acceptors
    Usman Ali
    Amina Tariq
    Adeela Kiran
    Faheem Abbas
    Muhammad Tahir Khalil
    Chemical Papers, 2021, 75 : 4327 - 4336
  • [50] Tuning the absorption and optoelectronic properties of naphthalene diimide based solar cells with non-fullerene acceptors
    Ali, Usman
    Tariq, Amina
    Kiran, Adeela
    Abbas, Faheem
    Khalil, Muhammad Tahir
    CHEMICAL PAPERS, 2021, 75 (08) : 4327 - 4336