This article provides an introduction to the burgeoning academic literature on Bayesian vector autoregressions, benchmark models for applied macroeconomic research. I first explain Bayes' theorem and the derivation of the closed-form solution for the posterior distribution of the parameters of the model's given data. I further consider parameter shrinkage, a distinguishing feature of the prior distributions commonly employed in the analysis of large data. Finally, I describe the mechanisms that enable feasible computations for these linear models that efficiently extract the information content of many variables for economic forecasting and other applications.
机构:
Linkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, Linkoping, Sweden
Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, SwedenLinkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, Linkoping, Sweden
Wegmann, Bertil
Lundquist, Anders
论文数: 0引用数: 0
h-index: 0
机构:
Umea Univ, Dept Stat, Umea Sch Business Econ & Stat USBE, Umea, SwedenLinkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, Linkoping, Sweden
Lundquist, Anders
Eklund, Anders
论文数: 0引用数: 0
h-index: 0
机构:
Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
Linkoping Univ, Dept Biomed Engn, Div Med Informat, Linkoping, SwedenLinkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, Linkoping, Sweden
Eklund, Anders
Villani, Mattias
论文数: 0引用数: 0
h-index: 0
机构:
Stockholm Univ, Dept Stat, Stockholm, SwedenLinkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, Linkoping, Sweden