The Diophantine equation X2-db2Y4=1

被引:0
|
作者
Walsh, G [1 ]
机构
[1] Univ Ottawa, Dept Math, 585 King Edward, Ottawa, ON K1N 6N5, Canada
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:179 / 188
页数:10
相关论文
共 50 条
  • [31] DIOPHANTINE EQUATION Y2 = DX4+1
    COHN, JHE
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (167P): : 475 - &
  • [32] ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION x2+2a . pb = y4
    Zhu, Huilin
    Le, Maohua
    Soydan, Goekhan
    MATHEMATICAL REPORTS, 2015, 17 (03): : 255 - 263
  • [33] ON THE DIOPHANTINE EQUATION 6y~2=(x+1)(x~2-x+6)
    罗明
    Science Bulletin, 1987, (21) : 1510 - 1511
  • [34] The diophantine equation b2X4-dY2=1
    Bennett, MA
    Walsh, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) : 3481 - 3491
  • [35] On Diophantine equation 3a2x4 - By2=1
    He, Debiao
    Chen, Jianhua
    Wang, Yu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) : 679 - 687
  • [36] On Diophantine equation 3a2x4 − By2 = 1
    Debiao He
    Jianhua Chen
    Yu Wang
    Annali di Matematica Pura ed Applicata, 2010, 189 : 679 - 687
  • [37] The diophantine equation x(4)-Dy-2=1 .2.
    Cohn, JHE
    ACTA ARITHMETICA, 1997, 78 (04) : 401 - 403
  • [38] ON THE DIOPHANTINE EQUATION 6Y2=(X+1)(X2-X+6)
    LUO, M
    KEXUE TONGBAO, 1987, 32 (21): : 1510 - 1511
  • [39] THE DIOPHANTINE EQUATION x4+2n y4=1 IN QUADRATIC NUMBER FIELDS
    Li, Andrew
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (01) : 21 - 28
  • [40] ON THE DIOPHANTINE EQUATION x(2)+2(a) . 11(b) = y(n)
    Cangul, Ismail Naci
    Demirci, Musa
    Luca, Florian
    Pinter, Akos
    Soydan, Gokhan
    FIBONACCI QUARTERLY, 2010, 48 (01): : 39 - 46