Towards the exact simulation using hyperbolic Brownian motion

被引:2
|
作者
Ida, Yuuki [1 ]
Imamura, Yuri [2 ]
机构
[1] Ritsumeikan Univ, 1-1-1 Noji Higashi, Kusatsu, Shiga 5258577, Japan
[2] Tokyo Univ Sci, Chiyoda Ku, 1-11-2 Fujimi, Tokyo 1020071, Japan
关键词
Parametrix; Hyperbolic; Brownian motion; SABR model; McKean's kernel; Exact simulation;
D O I
10.1007/s13160-017-0265-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, an expansion of the transition density of Hyperbolic Brownian motion with drift is given, which is potentially useful for pricing and hedging of options under stochastic volatility models. We work on a condition on the drift which dramatically simplifies the proof.
引用
收藏
页码:833 / 843
页数:11
相关论文
共 50 条
  • [31] An Exact Brownian Dynamics Method for Cell Simulation
    Takahashi, Koichi
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS, 2008, 5307 : 5 - 6
  • [32] Exact time evolution in harmonic quantum Brownian motion
    Gaioli, FH
    Garcia-Alvarez, ET
    PHYSICA A, 1999, 264 (3-4): : 338 - 344
  • [33] Exact power spectra of Brownian motion with solid friction
    Touchette, Hugo
    Prellberg, Thomas
    Just, Wolfram
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (39)
  • [34] Exact time evolution in harmonic quantum Brownian motion
    Gaioli, F.H.
    Garcia-Alvarez, E.T.
    Physica A: Statistical Mechanics and its Applications, 1999, 264 (3-4): : 338 - 344
  • [35] A THEORETICAL NOTE ON THE SIMULATION OF BROWNIAN MOTION
    Gaines, G.
    Ruymgaart, F.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2013, 33 (02) : 99 - 106
  • [36] On spectral simulation of fractional Brownian motion
    Dieker, AB
    Mandjes, M
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2003, 17 (03) : 417 - 434
  • [37] Elementary simulation of tethered Brownian motion
    Beausang, John F.
    Zurla, Chiara
    Finzi, Laura
    Sullivan, Luke
    Nelson, Philip C.
    AMERICAN JOURNAL OF PHYSICS, 2007, 75 (06) : 520 - 523
  • [38] Simulation of the active Brownian motion of a microswimmer
    Volpe, Giorgio
    Gigan, Sylvain
    Volpe, Giovanni
    AMERICAN JOURNAL OF PHYSICS, 2014, 82 (07) : 659 - 664
  • [39] Brownian motion simulation: a quantization approach
    Fort, Jean-Claude
    Salomon, Luis A.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (09) : 1807 - 1817
  • [40] MARTIN BOUNDARY OF BROWNIAN MOTION ON GROMOV HYPERBOLIC METRIC GRAPHS
    Hong, Soonki
    Lim, Seonhee
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (08) : 3725 - 3757