High-Efficiency Diphenylpyrimidine Derivatives Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes

被引:3
|
作者
Sohn, Sunyoung [1 ]
Ha, Min Woo [2 ,3 ]
Park, Jiyong [4 ,5 ]
Kim, Yoo-Heon [2 ,3 ]
Ahn, Hyungju [6 ]
Jung, Sungjune [1 ]
Kwon, Soon-Ki [7 ]
Kim, Yun-Hi [2 ,3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Creat IT Engn, Pohang Si, South Korea
[2] Gyeongsang Natl Univ, Dept Chem, Jinju Si, South Korea
[3] Gyeongsang Natl Univ, Res Inst Green Energy Convergence Technol, Jinju Si, South Korea
[4] Inst Basic Sci IBS, Ctr Catalyt Hydrocarbon Functionalizat, Daejeon, South Korea
[5] Korea Adv Inst Sci & Technol KAIST, Dept Chem, Daejeon, South Korea
[6] Pohang Accelerator Lab, Pohang Si, South Korea
[7] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol & ERI, Jinju Si, South Korea
来源
FRONTIERS IN CHEMISTRY | 2020年 / 8卷
基金
新加坡国家研究基金会;
关键词
organic light-emitting diode; thermally activated delayed fluorescence; blue emitter; diphenylpyrimidine; singlet-triplet energy gap;
D O I
10.3389/fchem.2020.00356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic light-emitting diodes with thermally activated delayed fluorescence emitter have been developed with highly twisted donor-acceptor configurations and color-pure blue emitters. Synthesized 4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)-10H-spiro[acridine-9,9 '-fluorene] (4,6-PhPMAF) doped device with spiroacridine as a donor unit and diphenylpyrimidine as acceptor exhibits the device characteristics such as the luminescence, external quantum efficiencies, current efficiencies, and power efficiencies corresponding to 213 cd/m(2), 2.95%, 3.27 cd/A, and 2.94 lm/W with Commission International de l'Eclairage (CIE) coordinates of (0.15, 0.11) in 4,6-PhPMAF-doped DPEPO emitter. The reported 10-(4-(2,6-diphenylpyrimidin-4-yl)phenyl)-10H-spiro[acridine-9,9 '-fluorene] (2,6-PhPMAF) doped device exhibit high device performance with 1,445 cd/m(2), 12.38%, 19.6 cd/A, and 15.4 lm/W, which might be originated from increased internal quantum efficiency by up-converted triplet excitons to the singlet state with relatively smaller Delta E-ST of 0.17 eV and higher reverse intersystem crossing rate (k(RISC)) of 1.0 x10(8)/s in 2,6-PhPMAF than 0.27 eV and 3.9 x10(7)/s in 4,6-PhPMAF. Despite low performance of 4,6-PhPMAF doped device, synthesized 4,6-PhPMAF has better color purity as a deep-blue emission with y axis (0.11) than reported 2,6-PhPMAF with y axis (0.19) in CIE coordinate. The synthesized 4,6-PhPMAF has higher thermal stability of any transition up to 300 degrees C and decomposition temperature with only 5% weight loss in 400 degrees C than reported 2,6-PhPMAF. The maximum photoluminescence emission of 4,6-PhPMAF in various solvents appeared at 438 nm, which has blue shift about 20 nm than that of 2,6-PhPMAF, which contributes deep-blue emission in synthesized 4,6-PhPMAF.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Simplified thermally activated delayed fluorescence organic light-emitting diodes
    Park, Chan Hyuk
    Shim, Yong Sub
    Park, Cheol Hwee
    Jung, Sun-Gyu
    Park, Young Wook
    Ju, Byeong-Kwon
    OPTICAL MATERIALS, 2018, 86 : 233 - 238
  • [22] Using fullerene fragments as acceptors to construct thermally activated delayed fluorescence emitters for high-efficiency organic light-emitting diodes
    Chen, Jia-Xiong
    Wang, Hui
    Zhang, Xiang
    Xiao, Ya-Fang
    Wang, Kai
    Zhou, Lu
    Shi, Yi-Zhong
    Yu, Jia
    Lee, Chun-Sing
    Zhang, Xiao-Hong
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [23] Correction: Corrigendum: Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence
    Hajime Nakanotani
    Kensuke Masui
    Junichi Nishide
    Takumi Shibata
    Chihaya Adachi
    Scientific Reports, 4
  • [24] Prediction and Design of Efficient Exciplex Emitters for High-Efficiency, Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes
    Liu, Xiao-Ke
    Chen, Zhan
    Zheng, Cai-Jun
    Liu, Chuan-Lin
    Lee, Chun-Sing
    Li, Fan
    Ou, Xue-Mei
    Zhang, Xiao-Hong
    ADVANCED MATERIALS, 2015, 27 (14) : 2378 - 2383
  • [25] Asymmetric Thermally Activated Delayed Fluorescence Materials With Aggregation-Induced Emission for High-Efficiency Organic Light-Emitting Diodes
    Li, Huanhuan
    Zhi, Yibin
    Dai, Yizhong
    Jiang, Yunbo
    Yang, Qingqing
    Li, Mingguang
    Li, Ping
    Tao, Ye
    Li, Hui
    Huang, Wei
    Chen, Runfeng
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [26] High Performance Thermally Activated Delayed Fluorescence Sensitized Organic Light-Emitting Diodes
    Cai, Minghan
    Zhang, Dongdong
    Duan, Lian
    CHEMICAL RECORD, 2019, 19 (08): : 1611 - 1623
  • [27] Thermally Activated Delayed Fluorescence Host for High Performance Organic Light-Emitting Diodes
    Zhang, Lu
    Cheah, Kok Wai
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Thermally Activated Delayed Fluorescence Host for High Performance Organic Light-Emitting Diodes
    Lu Zhang
    Kok Wai Cheah
    Scientific Reports, 8
  • [29] Spatially optimized quaternary phosphine oxide host materials for high-efficiency blue phosphorescence and thermally activated delayed fluorescence organic light-emitting diodes
    Ding, Dongxue
    Zhang, Zhen
    Wei, Ying
    Yan, Pengfei
    Xu, Hui
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (43) : 11385 - 11396
  • [30] Thermally Activated Delayed Fluorescence Benzyl Cellulose Derivatives for Nondoped Organic Light-Emitting Diodes
    Shibano, Masaya
    Ochiai, Hiroki
    Suzuki, Katsuaki
    Kamitakahara, Hiroshi
    Kaji, Hironori
    Takano, Toshiyuki
    MACROMOLECULES, 2020, 53 (08) : 2864 - 2873