A hybrid deep learning framework for keratoconus detection based on anterior and posterior corneal maps

被引:0
|
作者
Al-Timemy, Ali H. [1 ,2 ]
Hazarbassanov, Rossen M. [3 ]
Mosa, Zahraa M. [4 ]
Alyasseri, Zaid [5 ]
Lavric, Alexandru [6 ]
Oliveira da Rosa, Claudio Alan [3 ]
Griz, Camila Palmeira [3 ]
Takahashi, Hidenori [7 ]
Yousefi, Siamak [8 ]
机构
[1] Univ Baghdad, Biomed Engn, Baghdad, Iraq
[2] Univ Plymouth, Sch Engn Comp & Math, Plymouth, Devon, England
[3] Univ Fed Sao Paulo, Dept Ophthalmol & Visual Sci, Sao Paulo, Brazil
[4] Uruk Univ, Coll Pharm, Baghdad, Iraq
[5] Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Bangi, Selangor, Malaysia
[6] Univ Stefan Cel Mare Suceava, Comp Elect & Automat Dept, Suceava, Romania
[7] Jichi Ika Daigaku, Dept Ophthalmol, Shimotsuke, Tochigi, Japan
[8] Univ Tennessee Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
46
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [1] A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
    Al-Timemy, Ali H.
    Mosa, Zahraa M.
    Alyasseri, Zaid
    Lavric, Alexandru
    Lui, Marcelo M.
    Hazarbassanov, Rossen M.
    Yousefi, Siamak
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (14):
  • [2] A device-agnostic deep learning model for detecting keratoconus based on anterior elevation corneal maps
    Al-Timemy, Ali
    Al-Zubaidi, Laith
    Ghaeb, Nebras
    Takahashi, Hidenori
    Lavric, Alexandru
    Mosa, Zahraa
    Hazarbassanov, Rossen M.
    Alyasseri, Zaid Abdi Alkareem
    Yousefi, Siamak
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [3] Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
    Al-Timemy, Ali H.
    Ghaeb, Nebras H.
    Mosa, Zahraa M.
    Escudero, Javier
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1627 - 1642
  • [4] Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
    Ali H. Al-Timemy
    Nebras H. Ghaeb
    Zahraa M. Mosa
    Javier Escudero
    Cognitive Computation, 2022, 14 : 1627 - 1642
  • [5] Deep learning models based on CNN architecture for early keratoconus detection using corneal topographic maps
    Imen Fourati Kallel
    Oussema Mahfoudhi
    Sonda Kammoun
    Multimedia Tools and Applications, 2024, 83 : 49173 - 49193
  • [6] Deep learning models based on CNN architecture for early keratoconus detection using corneal topographic maps
    Kallel, Imen Fourati
    Mahfoudhi, Oussema
    Kammoun, Sonda
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 49173 - 49193
  • [7] Evaluation of Anterior and Posterior Corneal Higher Order Aberrations for the Detection of Keratoconus and Suspect Keratoconus
    Salman, Abdelrahman
    Kailani, Obeda
    Marshall, John
    Ghabra, Marwan
    Balamoun, Ashraf Armia
    Darwish, Taym R.
    Badla, Abdul Aziz
    Alhaji, Hala
    TOMOGRAPHY, 2022, 8 (06) : 2864 - 2873
  • [8] Correlation of Anterior and Posterior Corneal Shape in Keratoconus
    Montalban, Raul
    Alio, Jorge L.
    Javaloy, Jaime
    Pinero, David P.
    CORNEA, 2013, 32 (07) : 916 - 921
  • [9] Changes in anterior and posterior corneal curvatures in keratoconus
    Tomidokoro, A
    Oshika, T
    Amano, S
    Higaki, S
    Maeda, N
    Miyata, K
    OPHTHALMOLOGY, 2000, 107 (07) : 1328 - 1332
  • [10] Automated Keratoconus Detection Using Height Data of Anterior and Posterior Corneal Surfaces
    Kenichiro Bessho
    Naoyuki Maeda
    Teruhito Kuroda
    Takashi Fujikado
    Yasuo Tano
    Tetsuro Oshika
    Japanese Journal of Ophthalmology, 2006, 50 : 409 - 416