Direct identification of continuous-time linear parameter-varying input/output models

被引:27
|
作者
Laurain, V. [1 ]
Toth, R. [2 ]
Gilson, M. [1 ]
Garnier, H. [1 ]
机构
[1] Nancy Univ, CNRS, CRAN, F-54506 Vandoeuvre Les Nancy, France
[2] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
来源
IET CONTROL THEORY AND APPLICATIONS | 2011年 / 5卷 / 07期
关键词
INSTRUMENTAL VARIABLE METHODS;
D O I
10.1049/iet-cta.2010.0218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuous time (CT) requiring accurate and low-order CT models of the system. However, identification of CT-LPV models is largely unsolved, representing a gap between the available LPV identification methods and the needs of control synthesis. In order to bridge this gap, direct identification of CT-LPV systems in an input-output setting is investigated, focusing on the case when the noise part of the data generating system is an additive discrete-time (DT) coloured noise process. To provide consistent model parameter estimates in this setting, a refined instrumental variable (IV) approach is proposed and its properties are analysed based on the prediction-error framework. The benefits of the introduced direct CT-IV approach over identification in the DT case are demonstrated through a representative simulation example inspired by the Rao-Garnier benchmark.
引用
收藏
页码:878 / 888
页数:11
相关论文
共 50 条
  • [31] Dynamic Output FeedbackH∞Control for Linear Parameter-varying Systems with Time-delay
    Huang, Jinjie
    Pan, Xiaozhen
    Hao, Xianzhi
    Putra, Wanda
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (12) : 3133 - 3145
  • [32] Cooperative Output Regulation of Multiagent Linear Parameter-Varying Systems
    Mesbahi, Afshin
    Velni, Javad Mohammadpour
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [33] Linear Parameter-Varying System Identification: The Subspace Approach
    Corno, M.
    van Wingerden, J-W.
    Verhaegen, M.
    IDENTIFICATION FOR AUTOMOTIVE SYSTEMS, 2012, 418 : 53 - 65
  • [34] Linear parameter-varying subspace identification: A unified framework
    Cox, Pepijn Bastiaan
    Toth, Roland
    AUTOMATICA, 2021, 123
  • [35] Identification of linear parameter-varying systems via LFTs
    Lee, LH
    Poolla, K
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 1545 - 1550
  • [36] Global Identification of Linear Parameter-varying Vibration Systems
    Cai, Yu
    Liu, Xu
    Cheng, Yinghao
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (23): : 114 - 122
  • [37] Active Learning for Linear Parameter-Varying System Identification
    Chin, Robert
    Maass, Alejandro, I
    Ulapane, Nalika
    Manzie, Chris
    Shames, Iman
    Nesic, Dragan
    Rowe, Jonathan E.
    Nakada, Hayato
    IFAC PAPERSONLINE, 2020, 53 (02): : 989 - 994
  • [38] Recursive Subspace Identification of Linear Parameter-Varying Systems
    Buchholz, Michael
    Werner, Samuel
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 3408 - 3414
  • [39] Minimal state space realisation of continuous-time linear time-variant input-output models
    Goos, J.
    Pintelon, R.
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (04) : 722 - 730
  • [40] Identification of Continuous Time Linear Parameter Varying Models based on Reinitialized Partial Moments
    Chouaba, S. E. A.
    Sari, B.
    Belkhiat, D. E. C.
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 172 - 177