Experimental and Thermo-Mechanical Modeling Optimization of Thermal Friction Drilling for AISI 304 Stainless steel

被引:25
|
作者
El-Bahloul, Sara A. [1 ]
El-Shourbagy, Hazem E. [1 ]
El-Bahloul, Ahmed M. [1 ]
El-Midany, Tawfik T. [1 ]
机构
[1] Mansoura Univ, Prod & Mech Design Engn Dept, Fac Engn, Mansoura, Egypt
关键词
Thermal friction drilling; Bushing length; Axial force; Finite element modeling; Fuzzy logic; Regression analysis;
D O I
10.1016/j.cirpj.2017.10.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main purpose of this research is to investigate experimentally the optimal process parameters of thermal friction drilling process, based on the design of experiment method coupled with fuzzy logic and analysis of variance techniques, considering the resultant axial force and bushing length. A friction drilling machine is designed, and manufactured in Shoman Company - Egypt to perform the experimental work, and the tools are offered by Flowdrill Company - Netherlands. A temperature-dependent dynamic explicit modeling is applied, considering adaptive meshing, element deletion, and mass scaling techniques. The resultant optimal parameter levels combination is: 9.2 mm tool diameter, 30 degrees friction angle, 50% friction contact area ratio, 60 mm/min feed rate, and 3500 rpm rotational speed. A comparison is performed between the experimental and thermo-mechanical modeling results, considering the axial force, and a similar trend is achieved. Also a regression analysis is applied to predict the expected axial force and bushing length and confirmed by confirmation test. (c) 2017 CIRP.
引用
收藏
页码:84 / 92
页数:9
相关论文
共 50 条
  • [21] PROCESS PARAMETER OPTIMIZATION OF FRICTION CRUSH WELDING (FCW) OF AISI 304 STAINLESS STEEL
    Brar, Gurinder Singh
    Singh, Manpreet
    Jamwal, Ajay Singh
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 2, 2018,
  • [22] Thermo-mechanical Analysis of TIG Welding of AISI 316LN Stainless Steel
    Ganesh, K. C.
    Vasudevan, M.
    Balasubramanian, K. R.
    Chandrasekhar, N.
    Vasantharaja, P.
    MATERIALS AND MANUFACTURING PROCESSES, 2014, 29 (08) : 903 - 909
  • [23] Experimental Investigation with Optimization of Spot Welding Parameters on Stainless Steel AISI 304
    Habib Lebbal
    Mohammed Chaib
    Abdelkader Slimane
    Djafar Ait Kaci
    Noureddine Boualem
    JOM, 2023, 75 : 4993 - 5002
  • [24] Experimental Investigation with Optimization of Spot Welding Parameters on Stainless Steel AISI 304
    Lebbal, Habib
    Chaib, Mohammed
    Slimane, Abdelkader
    Ait Kaci, Djafar
    Boualem, Noureddine
    JOM, 2023, 75 (11) : 4993 - 5002
  • [25] Friction stir welding of AISI 304 austenitic stainless steel
    Meran, C.
    Kovan, V.
    Alptekin, A.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2007, 38 (10) : 829 - 835
  • [26] The effect of texture on friction of AISI304 stainless steel
    Azzi, M
    Bateni, MR
    Szpunar, JA
    Jedrzejowski, P
    Klemberg-Sapieha, JE
    ICOTOM 14: TEXTURES OF MATERIALS, PTS 1AND 2, 2005, 495-497 : 1579 - 1584
  • [27] Simulation of thermo-mechanical behaviour of friction drilling process
    Kumar R.
    Hynes N.R.J.
    Khan A.
    International Journal of Computational Materials Science and Surface Engineering, 2020, 9 (01) : 70 - 84
  • [28] Thermo-mechanical analysis of the MIG/MAG multi-pass welding process on AISI 304L stainless steel plates
    Farias, Rodrigo M.
    Teixeira, Paulo R. F.
    Araujo, Douglas B.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2017, 39 (04) : 1245 - 1258
  • [29] Thermo-mechanical analysis of the MIG/MAG multi-pass welding process on AISI 304L stainless steel plates
    Rodrigo M. Farias
    Paulo R. F.  Teixeira
    Douglas B. Araújo
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39 : 1245 - 1258
  • [30] Fully coupled thermo-mechanical finite element modeling of friction stir processing of super duplex stainless steel
    Md. Eyasin Arafat
    Fadi Al Badour
    Neçar Merah
    The International Journal of Advanced Manufacturing Technology, 2021, 112 : 3485 - 3500