Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Holder Neuron Activations

被引:0
|
作者
Wang, Xiaohong [1 ]
Wu, Huaiqin [1 ]
机构
[1] Yanshan Univ, Sch Sci, Qinhuangdao 066001, Hebei, Peoples R China
关键词
fractional neural networks; global Mittag-Leffler stability; delta-inverse Holder functions; Lur'e Postnikov-type Lyapunov functional; topological degree; FINITE-TIME; SYNCHRONIZATION;
D O I
10.3103/S1060992X19040064
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with delta-inverse holder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure's Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 50 条
  • [2] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [3] Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations
    Ding, Zhixia
    Shen, Yi
    Wang, Leimin
    [J]. NEURAL NETWORKS, 2016, 73 : 77 - 85
  • [4] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    [J]. NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [5] Global exponential stability of Hopfield neural networks with delays and inverse Lipschitz neuron activations
    Wu, Huaiqin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2297 - 2306
  • [6] LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses
    Wu, Huaiqin
    Zhang, Xinxin
    Xue, Shunhui
    Wang, Lifei
    Wang, Yu
    [J]. NEUROCOMPUTING, 2016, 193 : 148 - 154
  • [7] On global stability of Hopfield neural networks with discontinuous neuron activations
    Forti, M
    Nistri, P
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III: GENERAL & NONLINEAR CIRCUITS AND SYSTEMS, 2003, : 478 - 481
  • [8] Global Mittag-Leffler Stabilization of Fractional-Order Memristive Neural Networks
    Wu, Ailong
    Zeng, Zhigang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (01) : 206 - 217
  • [9] Mittag-Leffler stability of neural networks with Caputo-Hadamard fractional derivative
    Demirci, Elif
    Karakoc, Fatma
    Kutahyalioglu, Aysen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10091 - 10100
  • [10] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288