On the uniqueness of maximal immediate extensions of valued differential fields

被引:1
|
作者
van den Dries, Lou [1 ]
Pynn-Coates, Nigel [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Valued differential fields; Differential-henselianity; Differential-henselizations; Finite archimedean rank;
D O I
10.1016/j.jalgebra.2018.10.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
So far there exist just a few results about the uniqueness of maximal immediate valued differential field extensions and about the relationship between differential-algebraic maximality and differential-henselianity; see [1, Chapter 7]. We remove here the assumption of monotonicity in these results but replace it with the assumption that the value group is the union of its convex subgroups of finite (archimedean) rank. We also show the existence and uniqueness of differential-henselizations of asymptotic fields with such a value group. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
  • [21] On the non-uniqueness of maximal purely wild extensions
    Dutta, Arpan
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 1118 - 1139
  • [22] A uniqueness problem in valued function fields of conics
    Khanduja, SK
    Saha, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 : 455 - 462
  • [23] KEY POLYNOMIALS FOR SIMPLE EXTENSIONS OF VALUED FIELDS
    Govantes, F. J. Herrera
    Mahboub, W.
    Acosta, M. A. Olalla
    Spivakovsky, M.
    JOURNAL OF SINGULARITIES, 2022, 25 : 197 - 267
  • [24] On valuation independence and defectless extensions of valued fields
    Kovacsics, Pablo Cubides
    Kuhlmann, Franz-Viktor
    Rzepka, Anna
    JOURNAL OF ALGEBRA, 2020, 555 : 69 - 95
  • [25] Extensions of discrete finite rank valued fields
    Naseem, Asim
    Popescu, Angel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2008, 51 (03): : 245 - 252
  • [26] A NOTE ON DEFECTLESS EXTENSIONS OF HENSELIAN VALUED FIELDS
    Nikseresht, Azadeh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (01): : 65 - 74
  • [27] TAME AND PURELY WILD EXTENSIONS OF VALUED FIELDS
    Ershov, Yu L.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (05) : 765 - 773
  • [28] v-maximal extensions, henselian fields and conservative fields
    Alexandru, Victor
    Popescu, Angel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (01): : 55 - 64
  • [29] ABELIAN EXTENSIONS OF DIFFERENTIAL FIELDS
    KOLCHIN, ER
    AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (04) : 779 - 790
  • [30] CONSTRAINED EXTENSIONS OF DIFFERENTIAL FIELDS
    KOLCHIN, ER
    ADVANCES IN MATHEMATICS, 1974, 12 (02) : 141 - 170