Tunable Density of FeSe1-xTex Targets With High Pressure Sintering

被引:0
|
作者
Zhang, Han-Fang [1 ]
Xiao, Qi-Ling [1 ]
Chen, Fei [1 ]
Ge, Jun-Yi [2 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, Dept Phys, Shanghai Key Lab High Temp Superconductors, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Density; FeSeTe; hot press; solid-state reaction; target; SUPERCONDUCTING PROPERTIES; FIELD; TEMPERATURE; FILMS; GROWTH;
D O I
10.1109/TASC.2021.3135446
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we report a method for preparing high quality FeSe1-xTex targets with tunable density using a high-pressure sintering process. The phase formation of the target is checked by X-ray diffraction. The targets show a single phase and can be indexed to a tetragonal structure with the space group of P4/nmm. Compared with the target prepared by the normally used solid-state reaction method, the density has been dramatically increased to 92.10% of the theoretical density. We also developed a more effective method of adjusting the density of the FeSe1-xTex targets by changing the sintering temperature at a constant pressure. The preparation method of our FeSe1-xTex target promises to provide an opportunity for the preparation of long coated conductors.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Investigation of Transport Properties for FeSe1-xTex Thin Films under Magnetic Fields
    Sawada, Yuichi
    Nabeshima, Fuyuki
    Imai, Yoshinori
    Maeda, Atsutaka
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (07)
  • [42] On the Nature of Microwave Response of the Resonator With a Thin FeSe1-xTex Film Near Critical Temperature
    Cherpak, Nickolay M. T.
    Barannik, Alexander A.
    He, Yusheng
    Sun, Liang
    Zhang, Xueqiang
    Ma, Yanwei
    Bian, Yongbo
    Li, Guoqiang
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (04)
  • [43] Origin of lattice compression of FeSe1-xTex thin films on CaF2 substrates
    Tsukada, I.
    Ichinose, A.
    Nabeshima, F.
    Imai, Y.
    Maeda, A.
    AIP ADVANCES, 2016, 6 (09):
  • [44] Specific heat in magnetic fields and superconducting gap structure in FeSe1-xTex (0.6 ≤ x ≤ 1)
    Konno, Takuya
    Adachi, Tadashi
    Imaizumi, Masato
    Noji, Takashi
    Kawamata, Takayuki
    Koike, Yoji
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2014, 504 : 16 - 18
  • [45] Effect of proton irradiation on the fluctuation-induced magnetoconductivity of FeSe1-xTex thin films
    Ahmad, D.
    Choi, W. J.
    Seo, Y. I.
    Seo, Sehun
    Lee, Sanghan
    Park, Tuson
    Mosqueira, J.
    Gu, Genda
    Kwon, Yong Seung
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [46] Electronic properties of FeSe1-xTex probed by x-ray emission and absorption spectroscopy
    Simonelli, L.
    Saini, N. L.
    Mizuguchi, Y.
    Takano, Y.
    Mizokawa, T.
    Baldi, G.
    Monaco, G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (41)
  • [47] Thermal post processing of FeSe1-xTex: formation of surface iron oxides and enhancement of Jc
    Uhrig, David M.
    Williams, Grant V. M.
    Bioletti, Gabriel
    Chong, Shen, V
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2019, 32 (07):
  • [48] Phase separation near the charge neutrality point in FeSe1-xTex crystals with x < 0.15
    Ovchenkov, Y. A.
    Chareev, D. A.
    Kozlyakova, E. S.
    Levin, E. E.
    Mikheev, M. G.
    Presnov, D. E.
    Trifonov, A. S.
    Volkova, O. S.
    Vasiliev, A. N.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2022, 35 (01):
  • [49] Superconducting FeSe1-xTex Single Crystals Grown by Optical Zone-Melting Technique
    Yeh, K. W.
    Ke, C. T.
    Huang, T. W.
    Chen, T. K.
    Huang, Y. L.
    Wu, P. M.
    Wu, M. K.
    CRYSTAL GROWTH & DESIGN, 2009, 9 (11) : 4847 - 4851
  • [50] Microwave surface impedance measurements of LiFeAs, LiFe(As,P) and FeSe1-xTex single crystals
    Imai, Y.
    Takahashi, H.
    Okada, T.
    Yoshinaka, T.
    Komiya, S.
    Kitagawa, K.
    Matsubayashi, K.
    Tsukada, I.
    Uwatoko, Y.
    Maeda, A.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2011, 471 (21-22): : 630 - 633