A unified stochastic model for detecting and tracking faces

被引:2
|
作者
Gangaputra, S [1 ]
Geman, D [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
关键词
D O I
10.1109/CRV.2005.12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose merging face detection and face tracking into a single probabilistic framework. The motivation steins from a broader project in algorithmic modeling, centered on the design and analysis of the online computational process in visual recognition. Detection is represented as a tree-structured graphical network in which likelihoods are assigned to each history or "trace" of processing, thereby introducing a new probabilistic component into coarse-to-fine search strategies. When embedded within a temporal Markov framework, the resulting tracking system yields encouraging results.
引用
收藏
页码:306 / 313
页数:8
相关论文
共 50 条
  • [31] Stochastic model predictive control for tracking linear systems
    D'Jorge, Agustina
    Santoro, Bruno F.
    Anderson, Alejandro
    Gonzalez, Alejandro H.
    Ferramosca, Antonio
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2020, 41 (01): : 65 - 83
  • [32] Embedding motion in model-based stochastic tracking
    Odobez, Jean-Marc
    Gatica-Perez, Daniel
    Ba, Sileye O.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (11) : 3514 - 3530
  • [33] Embedding motion in model-based stochastic tracking
    Odobez, JM
    Gatica-Perez, D
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 815 - 818
  • [34] Hybrid Deep Learning Model Based on GAN and RESNET for Detecting Fake Faces
    Safwat, Soha
    Mahmoud, Ayat
    Eldesouky Fattoh, Ibrahim
    Ali, Farid
    IEEE ACCESS, 2024, 12 : 86391 - 86402
  • [35] Integration of Modified Inverse Observation Model and Multiple Hypothesis Tracking for Detecting and Tracking Humans
    Chang, Feng-Min
    Lian, Feng-Li
    Chou, Chih-Chung
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2016, 13 (01) : 160 - 170
  • [36] A Stochastic Model for Detecting Heterogeneous Link Communities in Complex Networks
    He, Dongxiao
    Liu, Dayou
    Jin, Di
    Zhang, Weixiong
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 130 - 136
  • [37] THE 4/2 STOCHASTIC VOLATILITY MODEL: A UNIFIED APPROACH FOR THE HESTON AND THE 3/2 MODEL
    Grasselli, Martino
    MATHEMATICAL FINANCE, 2017, 27 (04) : 1013 - 1034
  • [38] GENERALIZED ELL FOR DETECTING AND TRACKING THROUGH ILLUMINATION MODEL CHANGES
    Kale, Amit
    Vaswani, Namrata
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2736 - 2739
  • [39] PORTERS VERSUS ROWERS - A UNIFIED STOCHASTIC-MODEL OF MOTOR PROTEINS
    LEIBLER, S
    HUSE, DA
    JOURNAL OF CELL BIOLOGY, 1993, 121 (06): : 1357 - 1368
  • [40] Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework
    Zhang, Siliang
    Chen, Yunxiao
    PSYCHOMETRIKA, 2022, 87 (04) : 1473 - 1502