Empirical likelihood inference for random coefficient INAR(p) process

被引:32
|
作者
Zhang, Haixiang [1 ]
Wang, Dehui [1 ]
Zhu, Fukang [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Models of count data; random coefficient; INAR process; empirical likelihood; asymptotic distribution; VALUED AUTOREGRESSIVE PROCESSES; PARTIAL LINEAR-MODELS; TIME-SERIES;
D O I
10.1111/j.1467-9892.2010.00691.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the empirical likelihood (EL) method for the pth-order random coefficient integer-valued autoregressive process. In particular, the limiting distribution of the log EL ratio statistic is established and the confidence regions for the parameter of interest are derived. Also a simulation study is conducted for the evaluation of the developed approach.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 50 条
  • [21] On random coefficient INAR processes with long memory
    Beran, Jan
    Droullier, Frieder
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2025,
  • [22] First-order random coefficient INAR process with dependent counting series
    Liu, Jie
    Zhang, Haixiang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (06) : 3341 - 3354
  • [23] Empirical Likelihood Inference for Functional Coefficient ARCH-M Model
    Hai Qing ZHAO
    Yuan LI
    Yan Meng ZHAO
    Acta Mathematica Sinica,English Series, 2019, 35 (02) : 270 - 296
  • [24] Empirical Likelihood Inference for Functional Coefficient ARCH-M Model
    Zhao, Hai Qing
    Li, Yuan
    Zhao, Yan Meng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (02) : 270 - 296
  • [25] Empirical Likelihood Inference for Functional Coefficient ARCH-M Model
    Hai Qing Zhao
    Yuan Li
    Yan Meng Zhao
    Acta Mathematica Sinica, English Series, 2019, 35 : 270 - 296
  • [26] Empirical Likelihood Inference for Functional Coefficient ARCH-M Model
    Hai Qing ZHAO
    Yuan LI
    Yan Meng ZHAO
    Acta Mathematica Sinica, 2019, 35 (02) : 270 - 296
  • [27] Penalized empirical likelihood inference for the GINAR(p) model
    Wang, Xinyang
    Wang, Dehui
    STATISTICS, 2022, 56 (04) : 785 - 804
  • [28] Empirical likelihood inference for time-varying coefficient autoregressive models
    Zhang, Xilin
    Fan, Guoliang
    Xu, Hongxia
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (04)
  • [29] Whittle likelihood estimation in INAR(1) process
    Zeng, Xiaoqiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (17) : 6177 - 6196
  • [30] Empirical Likelihood for a First-Order Generalized Random Coefficient Integer-Valued Autoregressive Process
    Jianhua Cheng
    Xu Wang
    Dehui Wang
    Journal of Systems Science and Complexity, 2023, 36 : 843 - 865