Motion of a vortex filament on a slanted plane

被引:2
|
作者
Aiki, Masashi [1 ]
机构
[1] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, 2641 Yamazaki, Noda, Chiba 2788510, Japan
关键词
EQUATION;
D O I
10.1016/j.jde.2017.07.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear model equation, known as the Localized Induction Equation, describing the motion of a vortex filament immersed in an incompressible and inviscid fluid. We prove the unique solvability of an initial boundary value problem describing the motion of a vortex filament on a slanted plane. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:6885 / 6915
页数:31
相关论文
共 50 条
  • [21] Motion of three-dimensional vortex filament and particle transport
    Kimura, Yoshi
    IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics, 2006, 79 : 275 - 282
  • [22] Motion of a vortex filament in the local induction approximation: a perturbative approach
    Robert A. Van Gorder
    Theoretical and Computational Fluid Dynamics, 2012, 26 : 161 - 171
  • [23] Motion of a curved vortex filament: Higher-order asymptotics
    Fukumoto, Y
    IUTAM SYMPOSIUM ON GEOMETRY AND STATISTICS OF TURBULENCE, 2001, 59 : 211 - 216
  • [24] DYNAMICS OF VORTEX ASYMMETRIES AND THEIR INFLUENCE ON VORTEX MOTION ON A BETA-PLANE
    PENG, MS
    WILLIAMS, RT
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1990, 47 (16) : 1987 - 2003
  • [25] Stereo Matching for Slanted Plane
    Zhai, Zhengang
    Lu, Yao
    Zhao, Hong
    An, Yaozu
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS, 2008, : 997 - 1000
  • [26] Plane ovsyannikov vortex: Motion properties and exact solutions
    S. V. Golovin
    Journal of Applied Mechanics and Technical Physics, 2008, 49 : 934 - 945
  • [27] Vortex motion around a circular cylinder above a plane
    Vasconcelos, G. L.
    Moura, M.
    PHYSICS OF FLUIDS, 2017, 29 (08)
  • [28] Plane ovsyannikov vortex: Motion properties and exact solutions
    Golovin, S. V.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2008, 49 (06) : 934 - 945
  • [29] Generalized point-vortex model for the motion of a dipole-vortex on the β-plane
    Shivamoggi, BK
    van Heijst, GJF
    FLUID DYNAMICS RESEARCH, 1998, 23 (02) : 113 - 124
  • [30] STRUCTURE-PRESERVING FINITE DIFFERENCE SCHEME FOR VORTEX FILAMENT MOTION
    Ishiwata, Tetsuya
    Kumazaki, Kota
    ALGORITMY 2012, 2012, : 230 - 238