An Impulsive Predator-Prey System with Modified Leslie-Gower Functional Response and Diffusion

被引:5
|
作者
Li, Xiaoyue [1 ]
Wang, Qi [1 ]
Han, Renji [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[2] Univ Sci & Technol, Sch Sci, Hangzhou 310023, Peoples R China
关键词
Impulsive predator-prey model; Diffusion; Modified Leslie-Gower functional response; Permanence; Periodic solution; Globally stable; GLOBAL STABILITY; MODEL; DYNAMICS; PERSISTENCE; BIFURCATION; EXISTENCE;
D O I
10.1007/s12346-021-00517-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an impulsive diffusive predator-prey system with modified Leslie-Gower functional response and Beddington-DeAngelis functional response is investigated. Some conditions for the permanence and the existence of a unique globally stable periodic solution of the predator-prey system are obtained by using the comparison theorem and Lyapunov functions. Some numerical simulations are listed to show the main results.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Multiple bifurcations of a discrete modified Leslie-Gower predator-prey model
    Sun, Yajie
    Zhao, Ming
    Du, Yunfei
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 20437 - 20467
  • [32] Nonlinear Instability for a Leslie-Gower Predator-Prey Model with Cross Diffusion
    Zhang, Lina
    Fu, Shengmao
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [33] BIFURCATION ANALYSIS IN A MODIFIED LESLIE-GOWER PREDATOR-PREY MODEL WITH BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE
    Cao, Jianzhi
    Ma, Li
    Hao, Pengmiao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 3026 - 3053
  • [34] Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model
    Toaha, S.
    Azis, M. I.
    2ND INTERNATIONAL CONFERENCE ON SCIENCE (ICOS), 2018, 979
  • [35] A modified Leslie-Gower predator-prey interaction model and parameter identifiability
    Tripathi, Jai Prakash
    Meghwani, Suraj S.
    Thakur, Manoj
    Abbas, Syed
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 54 : 331 - 346
  • [36] THRESHOLD DYNAMICS OF A REACTION-DIFFUSION-ADVECTION LESLIE-GOWER PREDATOR-PREY SYSTEM
    Zhang, Baifeng
    Zhang, Guohong
    Wang, Xiaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 4969 - 4993
  • [37] HOPF BIFURCATION ANALYSIS FOR A DELAYED LESLIE-GOWER PREDATOR-PREY SYSTEM WITH DIFFUSION EFFECTS
    Wang, Lin-Lin
    Zhou, Bei-Bei
    Fan, Yong-Hong
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2014, 7 (01)
  • [39] Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 1 - 18
  • [40] On a Leslie-Gower predator-prey model incorporating a prey refuge
    Chen, Fengde
    Chen, Liujuan
    Xie, Xiangdong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2905 - 2908