STRESS FIELD PREDICTION IN CANTILEVERED STRUCTURES USING CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Nie, Zhenguo [1 ]
Jiang, Haoliang [1 ]
Kara, Levent Burak [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 1 | 2020年
关键词
deep learning; stress fields; CNN; StressNet; DAMAGE DETECTION; MECHANICS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The demand for fast and accurate structural analysis is becoming increasingly more prevalent with the advance of generative design and topology optimization technologies. As one step toward accelerating structural analysis, this work explores a deep learning based approach for predicting the stress fields in 2D linear elastic cantilevered structures subjected to external static loads at its free end using convolutional neural networks (CNN). Two different architectures are implemented that take as input the structure geometry, external loads, and displacement boundary conditions, and output the predicted von Mises stress field. The first is a single input channel network called SCSNet as the baseline architecture, and the second is the multi -channel input network called StressNet. Accuracy analysis shows that StressNet results in significantly lower prediction errors than SCSNet on three loss functions, with a mean relative error of 2.04% for testing. These results suggest that deep learning models may offer a promising alternative to classical methods in structural design and topology optimization. Code and dataset are available at h t tps : // git hub. com/ zhenguonie/stress_net
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Stock Market Trend Prediction Using Recurrent Convolutional Neural Networks
    Xu, Bo
    Zhang, Dongyu
    Zhang, Shaowu
    Li, Hengchao
    Lin, Hongfei
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 166 - 177
  • [42] Prediction of permeability of porous media using optimized convolutional neural networks
    Ramos, Eliaquim M.
    Borges, Marcio R.
    Giraldi, Gilson A.
    Schulze, Bruno
    Bernardo, Felipe
    COMPUTATIONAL GEOSCIENCES, 2023, 27 (01) : 1 - 34
  • [43] Prediction of Centromere Location in Human Chromosome Using Convolutional Neural Networks
    Vatres, Ajdin
    Pojski, Naris
    Kadric, Edin
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2023, 12 (03): : 1242 - 1251
  • [44] Path Loss Prediction in Urban Areas using Convolutional Neural Networks
    Rafie, Irfan Farhan Mohamad
    Lim, Soo Yong
    Chung, Michael Jenn Hwan
    2022 IEEE INTERNATIONAL RF AND MICROWAVE CONFERENCE, RFM, 2022,
  • [45] Network Prediction with Traffic Gradient Classification using Convolutional Neural Networks
    Ko, Taejin
    Raza, Syed M.
    Dang Thien Binh
    Kim, Moonseong
    Choo, Hyunseung
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,
  • [46] Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
    Ramujee, Kolli
    Sadula, Pooja
    Madhu, Golla
    Kautish, Sandeep
    Almazyad, Abdulaziz S.
    Xiong, Guojiang
    Mohamed, Ali Wagdy
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (02): : 1455 - 1486
  • [47] Prediction and factors of Seoul apartment price using convolutional neural networks
    Lee, Hyunjae
    Son, Donghui
    Kim, Sujin
    Oh, Sein
    Kim, Jaejik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2020, 33 (05) : 603 - 614
  • [48] Prediction of adverse drug reactions using drug convolutional neural networks
    Mantripragada, Anjani Sankar
    Teja, Sai Phani
    Katasani, Rohith Reddy
    Joshi, Pratik
    Masilamani, V
    Ramesh, Raj
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2021, 19 (01)
  • [49] Prediction of activity cliffs on the basis of images using convolutional neural networks
    Iqbal, Javed
    Vogt, Martin
    Bajorath, Juergen
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2021, 35 (12) : 1157 - 1164
  • [50] Genomic prediction of growth traits in scallops using convolutional neural networks
    Zhu, Xinghai
    Ni, Ping
    Xing, Qiang
    Wang, Yangfan
    Huang, Xiaoting
    Hu, Xiaoli
    Hu, Jingjie
    Wu, Xiao-Lin
    Bao, Zhenmin
    AQUACULTURE, 2021, 545