Entropy test and residual empirical process for autoregressive conditional duration models

被引:5
|
作者
Lee, Sangyeol [1 ]
Oh, Haejune [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Entropy based goodness of fit test; Residual empirical process; Nonlinear ACD model; Parametric bootstrap method; TRANSACTION DATA; TIME-SERIES; FIT;
D O I
10.1016/j.csda.2014.12.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study the entropy test for the goodness of fit test in (nonlinear) autoregressive conditional duration (ACD) models. To implement a test, we first explore the null limiting distribution of the residual empirical process from ACD models and verify that it has an asymptotic expansion form that consists of the true empirical process and extra terms yielded by parameter estimation. Then, we show that under regularity conditions, the proposed entropy test approximately follows a distribution that is free from the parameter estimation. For illustration, a simulation study and real data analysis are conducted. In the implementation of the test, a parametric bootstrap method is employed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] A robust goodness-of-fit test for generalized autoregressive conditional heteroscedastic models
    Zheng, Yao
    Li, Wai Keung
    Li, Guodong
    [J]. BIOMETRIKA, 2018, 105 (01) : 73 - 89
  • [32] Bayesian analysis of conditional autoregressive models
    De Oliveira, Victor
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2012, 64 (01) : 107 - 133
  • [33] A note on compatibility of conditional autoregressive models
    Dreassi, Emanuela
    Rigo, Pietro
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 125 : 9 - 16
  • [34] Bayesian analysis of conditional autoregressive models
    Victor De Oliveira
    [J]. Annals of the Institute of Statistical Mathematics, 2012, 64 : 107 - 133
  • [35] ON AN INDEPENDENT-SWITCHING PERIODIC AUTOREGRESSIVE CONDITIONAL DURATION
    Almohaimeed, Bader S.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08): : 2047 - 2059
  • [36] Exponential Autoregressive Conditional Duration Approach to Testing VaR
    Malecka, Marta
    [J]. ICOMS 2018: 2018 INTERNATIONAL CONFERENCE ON MATHEMATICS AND STATISTICS, 2018, : 6 - 10
  • [37] Semiparametric Autoregressive Conditional Duration Model: Theory and Practice
    Saart, Patrick W.
    Gao, Jiti
    Allen, David E.
    [J]. ECONOMETRIC REVIEWS, 2015, 34 (6-10) : 848 - 880
  • [38] The Birnbaum-Saunders autoregressive conditional duration model
    Bhatti, Chad R.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (10) : 2062 - 2078
  • [39] Entropy densities with an application to autoregressive conditional skewness and kurtosis
    Rockinger, M
    Jondeau, E
    [J]. JOURNAL OF ECONOMETRICS, 2002, 106 (01) : 119 - 142
  • [40] The conditional process model of mindfulness and emotion regulation: An empirical test
    Curtiss, Joshua
    Klemanski, David H.
    Andrews, Leigh
    Ito, Masaya
    Hofmann, Stefan G.
    [J]. JOURNAL OF AFFECTIVE DISORDERS, 2017, 212 : 93 - 100