Joint Traffic Signal and Connected Vehicle Control in IoV via Deep Reinforcement Learning

被引:6
|
作者
Wang, Zixin [1 ,2 ,3 ]
Zhu, Hanyu [1 ,2 ,3 ]
Zhou, Yong [1 ]
Luo, Xiliang [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic network control; reinforcement learning; Internet of vehicles; intelligent transportation systems;
D O I
10.1109/WCNC49053.2021.9417262
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose to exploit the interconnection in the Internet of Vehicles (IoV) to realize efficient traffic network control, which is indispensable in building intelligent transportation systems (ITS). In addition to control the traffic signals as in conventional traffic network control schemes, we propose to control the detouring behavior of the connected vehicles as well, with an objective to further enhance the traffic efficiency. Specifically, we formulate the joint traffic signal and connected vehicle control problem as a reinforcement learning (RL) problem, the action and state spaces of which are specifically designed to take into account the connected vehicles. To characterize the detouring behavior of the connected vehicles while keeping the decision process simple, we introduce a new concept termed as detouring ratio, which is defined as the fraction of connected vehicles that detour. Moreover, we also design an effective rewarding mechanism that takes into account the impact of the detouring on the network traffic efficiency. By utilizing tools from deep RL, we put forward an efficient algorithm to jointly control the traffic signals and the connected vehicles. Numerical results demonstrate the validity of our proposed models and show that the proposed joint control algorithm can significantly enhance the network traffic efficiency in terms of the travel time and the waiting time.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Joint Space Control via Deep Reinforcement Learning
    Kumar, Visak
    Hoeller, David
    Sundaralingam, Balakumar
    Tremblay, Jonathan
    Birchfield, Stan
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3619 - 3626
  • [22] RA-TSC: Learning Adaptive Traffic Signal Control Strategy via Deep Reinforcement Learning
    Du, Yu
    Wei ShangGuan
    Rong, Dingchao
    Chai, Linguo
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3275 - 3280
  • [23] Smarter and Safer Traffic Signal Controlling via Deep Reinforcement Learning
    Yu, Bingquan
    Guo, Jinqiu
    Zhao, Qinpei
    Li, Jiangfeng
    Rao, Weixiong
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3345 - 3348
  • [24] Adaptive Optimization of Traffic Signal Timing via Deep Reinforcement Learning
    Ma, Zibo
    Cui, Tongchao
    Deng, Wenxing
    Jiang, Fengyao
    Zhang, Liguo
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [25] Improving Traffic Signal Control With Joint-Action Reinforcement Learning
    Labres, Joao V. B.
    Bazzan, Ana L. C.
    Abdoos, Monireh
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [26] Fairness Control of Traffic Light via Deep Reinforcement Learning
    Li, Chenghao
    Ma, Xiaoteng
    Xia, Li
    Zhao, Qianchuan
    Yang, Jun
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 652 - 658
  • [27] Traffic Signal Control Under Mixed Traffic With Connected and Automated Vehicles: A Transfer-Based Deep Reinforcement Learning Approach
    Song, Li
    Fan, Wei
    IEEE ACCESS, 2021, 9 : 145228 - 145237
  • [28] Uniformity of markov elements in deep reinforcement learning for traffic signal control
    Ye, Bao-Lin
    Wu, Peng
    Li, Lingxi
    Wu, Weimin
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3843 - 3866
  • [29] Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study
    Tan, Jiyuan
    Yuan, Qian
    Guo, Weiwei
    Xie, Na
    Liu, Fuyu
    Wei, Jing
    Zhang, Xinwei
    SENSORS, 2022, 22 (22)
  • [30] An effective deep reinforcement learning approach for adaptive traffic signal control
    Yu, Mingrui
    Chai, Jaijun
    Lv, Yisheng
    Xiong, Gang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6419 - 6425