Set convergence for discretizations of the attractor

被引:1
|
作者
Hill, AT [1 ]
Suli, E [1 ]
机构
[1] UNIV OXFORD,COMP LAB,NUMER ANAL GRP,OXFORD OX1 3QD,ENGLAND
关键词
D O I
10.1093/imanum/16.2.289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretization of a dynamical system given by a C-o-semigroup S(t), defined on a Banach space X, possessing an attractor d. Under certain weak assumptions, Hale, Lin and Raugel showed that discretizations of S(t) possess local attractors, which may be considered as approximations to A. Without further assumptions, we show that these local attractors possess convergent subsequences in the Hausdorff or set metric, whose limit is a compact invariant subset of A. Using a new construction, we also consider the Kloeden and Lorenz concept of attracting sets in a Banach space, and show under mild assumptions that discretizations possess attracting sets converging to A in the Hausdorff metric.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [31] Measuring convergence of mixed finite element discretizations: an application to shell structures
    Hiller, JF
    Bathe, KJ
    COMPUTERS & STRUCTURES, 2003, 81 (8-11) : 639 - 654
  • [32] RATES OF CONVERGENCE FOR DISCRETIZATIONS OF THE STOCHASTIC INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Carelli, Erich
    Prohl, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2467 - 2496
  • [33] Invariant set and attractor of nonautonomous functional differential systems
    Zhao, HY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (02) : 437 - 443
  • [34] A butterfly-shaped localization set for the Lorenz attractor
    Suzuki, Masayasu
    Sakamoto, Noboru
    Yasukochi, Takashi
    PHYSICS LETTERS A, 2008, 372 (15) : 2614 - 2617
  • [35] Polynomial level-set method for attractor estimation
    Wang, Ta-Chung
    Lall, Sanjay
    West, Matthew
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (09): : 2783 - 2798
  • [36] Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
    Durmus, Alain
    Enfroy, Aurelien
    Moulines, Eric
    Stoltz, Gabriel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2025, 61 (01): : 629 - 664
  • [37] CONVERGENCE TO EQUILIBRIUM FOR TIME AND SPACE DISCRETIZATIONS OF THE CAHN-HILLIARD EQUATION
    Brachet, Matthieu
    Parnaudeau, Philippe
    Pierre, Morgan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, : 1987 - 2031
  • [38] Convergence of a Family of Galerkin Discretizations for the Stokes-Darcy Coupled Problem
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Sayas, Francisco-Javier
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) : 721 - 748
  • [39] Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces
    Geiss, Stefan
    Toivola, Anni
    BERNOULLI, 2009, 15 (04) : 925 - 954
  • [40] I-CONVERGENCE TO A SET
    Letavaj, P.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2011, 80 (01): : 103 - 106