Parameter estimation in spatial econometric models with non-random missing data

被引:2
|
作者
Seya, Hajime [1 ]
Tomari, Masashi [2 ]
Uno, Shohei [1 ]
机构
[1] Kobe Univ, Grad Sch Engn Fac Engn, Kobe, Hyogo, Japan
[2] Nippon Koei Co Ltd, Osaka, Japan
关键词
Sample selection; spatial lag model (SLM); spatial autocorrelation; social interaction; Bayesian Markov chain Monte Carlo (MCMC); SAMPLE SELECTION;
D O I
10.1080/13504851.2020.1758618
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study examines the problem of parameter estimation in spatial econometric/social interaction models with non-random missing outcome data. First, we construct a sample selection model considering spatial lag (autoregressive) dependence. Then, we suggest a parameter estimation method for this model by slightly modifying the Bayesian Markov chain Monte Carlo algorithm proposed in an existing study. A simple illustration indicates that the proposed parameter estimation method performs well overall if the spatial autocorrelation is moderate (spatial parameter equals 0.5 or less), even under a relatively high missing data ratio (around 40%).
引用
收藏
页码:440 / 446
页数:7
相关论文
共 50 条
  • [1] Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors
    Li, Tengjun
    Zhang, Zhikang
    Song, Yunquan
    [J]. AXIOMS, 2024, 13 (05)
  • [2] Probabilistic Matrix Factorization with Non-random Missing Data
    Hernandez-Lobato, Jose Miguel
    Houlsby, Neil
    Ghahramani, Zoubin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1512 - 1520
  • [3] MISSING DATA IN ECONOMETRIC ESTIMATION
    DRETTAKIS, EG
    [J]. REVIEW OF ECONOMIC STUDIES, 1973, 40 (04): : 537 - 552
  • [4] Effect of non-random missing data mechanisms in clinical trials
    Choi, SC
    Lu, IL
    [J]. STATISTICS IN MEDICINE, 1995, 14 (24) : 2675 - 2684
  • [5] Collaborative Score Prediction Method for Non-Random Missing Data
    Gu, Wanrong
    Xie, Xianfen
    Zhang, Ziye
    Mao, Yijun
    Liang, Zaoqing
    He, Yichen
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2021, 49 (01): : 47 - 57
  • [6] Parameter estimation for ARX models with missing data
    Horner, M.
    Pakzad, S. N.
    [J]. LIFE-CYCLE OF ENGINEERING SYSTEMS: EMPHASIS ON SUSTAINABLE CIVIL INFRASTRUCTURE, 2017, : 2138 - 2144
  • [7] CounterCLR: Counterfactual Contrastive Learning with Non-random Missing Data in Recommendation
    Wang, Jun
    Li, Haoxuan
    Zhang, Chi
    Liang, Dongxu
    Yu, Enyun
    Ou, Wenwu
    Wang, Wenjia
    [J]. 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1355 - 1360
  • [8] Addressing Bias from Non-Random Missing Attributes in Health Data
    Napoli, Nicholas J.
    Kotoriy, Madeline E.
    Barnhardt, William
    Young, Jeffrey S.
    Barnes, Laura E.
    [J]. 2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 265 - 268
  • [9] Computational aspects of the EM algorithm for spatial econometric models with missing data
    Suesse, Thomas
    Zammit-Mangion, Andrew
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (09) : 1767 - 1786
  • [10] CHARACTERIZING AND COMPLETING NON-RANDOM MISSING VALUES
    Ben Othman, L.
    Rioult, P.
    Ben Yahia, S.
    Cremilleux, B.
    [J]. INTELLIGENT DECISION MAKING SYSTEMS, VOL. 2, 2010, : 227 - +