Fabrication of nanometer scale gaps for thermo-tunneling devices

被引:7
|
作者
Tanielian, M. H. [1 ]
Greegor, R. B. [1 ]
Nielsen, J. A. [1 ]
Parazzoli, C. G. [1 ]
机构
[1] Boeing Res & Technol, Seattle, WA 98124 USA
关键词
METALLIC ELECTRODES; SEPARATION; EMISSION; NANOGAPS; CATHODE;
D O I
10.1063/1.3641897
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report a fabrication approach for making nanometer wide gaps between two planar metallic electrodes, which can be utilized for the formation of thermo-tunneling devices. The technique is a three dimensional variant of the electromigration techniques used for creating nanometer sized gaps on planar surfaces. The gap is formed by applying a low level voltage between two parallel electrodes, each deposited on separate wafers that have been bonded together. I-V and thermal characterization of the gap show very good agreement with modeling results, indicating a tunneling gap on the order of 0.5-1 nm. (C) 2011 American Institute of Physics. [doi:10.1063/1.3641897]
引用
收藏
页数:3
相关论文
共 50 条
  • [21] QUANTUM TUNNELING AND DISSIPATION IN NANOMETER-SCALE MAGNETS
    LOSS, D
    DIVINCENZO, DP
    GRINSTEIN, G
    AWSCHALOM, DD
    SMYTH, JF
    [J]. PHYSICA B, 1993, 189 (1-4): : 189 - 203
  • [22] MODELING OF COMPLICATED NANOMETER RESONANT TUNNELING DEVICES WITH QUANTUM DOTS
    SUMETSKII, M
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (16) : 2651 - 2664
  • [23] A new process tor nanometer scale devices
    Chen, Y
    Hadley, P
    Harmans, C
    Mooij, JE
    Ng, GI
    Yoon, SF
    [J]. MICROLITHOGRAPHIC TECHNIQUES IN IC FABRICATION, 1997, 3183 : 138 - 145
  • [24] Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs
    Williams, PA
    Papadakis, SJ
    Patel, AM
    Falvo, MR
    Washburn, S
    Superfine, R
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (05) : 805 - 807
  • [25] Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps
    Wallash, A
    Levit, L
    [J]. RELIABILITY, TESTING, AND CHARACTERIZATION OF MEMS/MOEMS II, 2003, 4980 : 87 - 96
  • [26] Note: Controlled fabrication of suspended metallic vacuum tunneling gaps
    Gunay-Demirkol, Anil
    Kaya, Ismet I.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):
  • [27] CREATION OF NANOMETER-SCALE STRUCTURES WITH THE SCANNING TUNNELING MICROSCOPE
    MASCHER, C
    DAMASCHKE, B
    [J]. JOURNAL OF APPLIED PHYSICS, 1994, 75 (10) : 5438 - 5440
  • [28] Nanometer-scale imaging with an ultrafast scanning tunneling microscope
    Steeves, GM
    Elezzabi, AY
    Freeman, MR
    [J]. APPLIED PHYSICS LETTERS, 1998, 72 (04) : 504 - 506
  • [29] NANOMETER-SCALE RECORDING AND ERASING WITH THE SCANNING TUNNELING MICROSCOPE
    SATO, A
    TSUKAMOTO, Y
    [J]. NATURE, 1993, 363 (6428) : 431 - 432
  • [30] TUNNELING TRANSDUCERS - QUANTUM LIMITED DISPLACEMENT MONITORS AT THE NANOMETER SCALE
    BOCKO, MF
    STEPHENSON, KA
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (02): : 1363 - 1366