Fabrication of nanometer scale gaps for thermo-tunneling devices

被引:7
|
作者
Tanielian, M. H. [1 ]
Greegor, R. B. [1 ]
Nielsen, J. A. [1 ]
Parazzoli, C. G. [1 ]
机构
[1] Boeing Res & Technol, Seattle, WA 98124 USA
关键词
METALLIC ELECTRODES; SEPARATION; EMISSION; NANOGAPS; CATHODE;
D O I
10.1063/1.3641897
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report a fabrication approach for making nanometer wide gaps between two planar metallic electrodes, which can be utilized for the formation of thermo-tunneling devices. The technique is a three dimensional variant of the electromigration techniques used for creating nanometer sized gaps on planar surfaces. The gap is formed by applying a low level voltage between two parallel electrodes, each deposited on separate wafers that have been bonded together. I-V and thermal characterization of the gap show very good agreement with modeling results, indicating a tunneling gap on the order of 0.5-1 nm. (C) 2011 American Institute of Physics. [doi:10.1063/1.3641897]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Analysis of nanometer vacuum gap formation in thermo-tunneling devices
    Enikov, E. T.
    Makansi, T.
    [J]. NANOTECHNOLOGY, 2008, 19 (07)
  • [2] FLEXIBLE ELECTRODE STRUCTURES FOR THERMO-TUNNELING APPLICATIONS
    Enikov, Eniko T.
    Gamez, Carlos
    Kanjiyani, Shezaan
    Ganji, Mandi
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 1657 - 1663
  • [3] NANOMETER SCALE STRUCTURE FABRICATION WITH THE SCANNING TUNNELING MICROSCOPE
    STAUFER, U
    WIESENDANGER, R
    ENG, L
    ROSENTHALER, L
    HIDBER, HR
    GUNTHERODT, HJ
    GARCIA, N
    [J]. APPLIED PHYSICS LETTERS, 1987, 51 (04) : 244 - 246
  • [4] APPLICATION OF DQM METHOD TO THE STEADY STATE ANALYSIS OF THERMO-TUNNELING ELECTRODES
    Enikov, Eniko T.
    Ganji, Mandi
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 10, 2014,
  • [5] NANOMETER-SCALE FABRICATION ON GRAPHITE SURFACES BY SCANNING TUNNELING MICROSCOPY
    UESUGI, K
    YAO, T
    [J]. ULTRAMICROSCOPY, 1992, 42 : 1443 - 1445
  • [6] Scanning tunneling microscopy-based fabrication of nanometer scale structures
    Nayfeh, MH
    [J]. ATOMIC FORCE MICROSCOPY/SCANNING TUNNELING MICROSCOPY 2, 1997, : 23 - 40
  • [7] Resonant thermo-tunneling design for ultra-efficient nanostructured solar cells
    Alemu, A.
    Freundlich, A.
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XIX, 2011, 7933
  • [8] Threshold behavior of nanometer scale fabrication process using scanning tunneling microscopy
    Wang, C
    Li, XD
    Shang, GY
    Qiu, XH
    Bai, CL
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 81 (03) : 1227 - 1230
  • [9] FABRICATION OF NANOMETER-SCALE CONDUCTING SILICON WIRES WITH A SCANNING TUNNELING MICROSCOPE
    CAMPBELL, PM
    SNOW, ES
    MCMARR, PJ
    [J]. SOLID-STATE ELECTRONICS, 1994, 37 (4-6) : 583 - 586
  • [10] Proximal probe-based fabrication of nanometer-scale devices
    Campbell, PM
    Snow, ES
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 51 (1-3): : 173 - 177