Novel Lithium-Ion Battery State-of-Health Estimation Method Using a Genetic Programming Model

被引:18
|
作者
Yao, Hang [1 ]
Jia, Xiang [1 ]
Zhao, Qian [2 ]
Cheng, Zhi-Jun [1 ]
Guo, Bo [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Informat & Commun, Xian 710106, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Estimation; Genetic programming; Feature extraction; Degradation; Monitoring; Li-ion battery; state-of-health (SOH); prognostic and health management; USEFUL LIFE PREDICTION; ELECTRIC VEHICLE-BATTERIES; EXTENDED KALMAN FILTER; CAPACITY ESTIMATION; CHARGE ESTIMATION; PARTICLE FILTER; ONLINE STATE; PROGNOSTICS; DIAGNOSIS;
D O I
10.1109/ACCESS.2020.2995899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State-of-health (SOH) is a health index (HI) that directly reflects the performance degradation of lithium-ion batteries in engineering, but the SOH of Li-ion batteries is difficult to measure directly. In this paper, a novel data-driven method is proposed to estimate the SOH of Li-ion batteries accurately and explore the relationship-like mechanism. First, the features of the battery should be extracted from the performance data. Next, by using the evolution of genetic programming to reflect the change in SOH, a mathematical model describing the relationship between the features and the SOH is constructed based on the data. Additionally, it has strong randomness in the formula model, which can cover most of the structural space of SOH and features. An illustrative example is presented to evaluate the SOH of the two batches of Li-ion batteries from the NASA database using the proposed method. One batch of batteries was used for testing and comparison, and another was chosen to verify the test results. Through experimental comparison and verification, it is demonstrated that the proposed method is rather useful and accurate.
引用
收藏
页码:95333 / 95344
页数:12
相关论文
共 50 条
  • [21] A State-of-Health Estimation Method of a Lithium-Ion Power Battery for Swapping Stations Based on a Transformer Framework
    Shi, Yu
    Xie, Haicheng
    Wang, Xinhong
    Lu, Xiaoming
    Wang, Jing
    Xu, Xin
    Wang, Dingheng
    Chen, Siyan
    BATTERIES-BASEL, 2025, 11 (01):
  • [22] A Novel Model-Based Voltage Construction Method for Robust State-of-Health Estimation of Lithium-Ion Batteries
    Bian, Xiaolei
    Wei, Zhongbao
    He, Jiangtao
    Yan, Fengjun
    Liu, Longcheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12173 - 12184
  • [23] A Hybrid Battery Model and State of Health Estimation Method for Lithium-Ion Batteries
    Sarikurt, Turev
    Ceylan, Murat
    Balikci, Abdulkadir
    2014 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON 2014), 2014, : 1349 - 1356
  • [24] Lithium-Ion Battery Ageing Behavior Pattern Characterization and State-of-Health Estimation Using Data-Driven Method
    Xia, Zhiyong
    Abu Qahouq, Jaber A.
    IEEE ACCESS, 2021, 9 : 98287 - 98304
  • [25] Critical summary and perspectives on state-of-health of lithium-ion battery
    Yang, Bo
    Qian, Yucun
    Li, Qiang
    Chen, Qian
    Wu, Jiyang
    Luo, Enbo
    Xie, Rui
    Zheng, Ruyi
    Yan, Yunfeng
    Su, Shi
    Wang, Jingbo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [26] State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity for Electric Buses
    Ye, Baolin
    Zhang, Zhaosheng
    Wang, Shuai
    Ma, Yucheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6096 - 6106
  • [27] Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-Ion Battery
    Liu, Wei
    Gao, Songchen
    Yan, Wendi
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (04)
  • [28] A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
    Ma, Zeyu
    Yang, Ruixin
    Wang, Zhenpo
    APPLIED ENERGY, 2019, 237 : 836 - 847
  • [29] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [30] A Unified Deep Learning Optimization Paradigm for Lithium-Ion Battery State-of-Health Estimation
    Cai, Lei
    Cui, Ningmin
    Jin, Haiyan
    Meng, Jinhao
    Yang, Shengxiang
    Peng, Jichang
    Zhao, Xinchao
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (01) : 589 - 600