Exponential Family and inverse - On metamorphoses of probability theory

被引:0
|
作者
Gottvald, A [1 ]
机构
[1] Acad Sci Czech Republ, Inst Sci Instruments, CS-61264 Brno, Czech Republic
关键词
Exponential Family; inverse problems; bayes' theorem; maxent principle; sufficient statistics; entropic functionals; lie groups; complex systems;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We associate Inverse Problems with a structure called Exponential Family. This structure is pivotal in many fundamental theories (Bayesian Probability Theory, Maximum Entropy Principle, Fourier-Laplace Transforms, Generatingfunctionology, Sufficient Statistics, Lie Groups, ...), and offers extensive applications to Physical Theories and Complex Systems.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 50 条
  • [21] ON THE EXPONENTIAL FUZZY PROBABILITY
    Yun, Yong Sik
    Song, Jae Choong
    Ryu, Sang Uk
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 21 (02): : 385 - 395
  • [22] The infinite metamorphoses of critical theory
    Hauser, Michael
    [J]. FILOSOFICKY CASOPIS, 2013, 61 (01): : 81 - 97
  • [24] CONJUGATE EXPONENTIAL FAMILY PRIORS FOR EXPONENTIAL FAMILY LIKELIHOODS
    ARNOLD, BC
    CASTILLO, E
    SARABIA, JM
    [J]. STATISTICS, 1993, 25 (01) : 71 - 77
  • [25] On Probability Estimation by Exponential Smoothing
    Mattern, Christopher
    [J]. 2015 DATA COMPRESSION CONFERENCE (DCC), 2015, : 460 - 460
  • [26] Exponential negation of a probability distribution
    Qinyuan Wu
    Yong Deng
    Neal Xiong
    [J]. Soft Computing, 2022, 26 : 2147 - 2156
  • [27] Inverse probability.
    Isserlis, L
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 1936, 99 : 130 - 137
  • [28] FISHER AND INVERSE PROBABILITY
    JEFFREYS, H
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1974, 42 (01) : 1 - 3
  • [29] Inverse or "a posteriori" Probability
    Wilson, JC
    [J]. NATURE, 1901, 63 : 154 - 156
  • [30] Exponential negation of a probability distribution
    Wu, Qinyuan
    Deng, Yong
    Xiong, Neal
    [J]. SOFT COMPUTING, 2022, 26 (05) : 2147 - 2156