Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis

被引:145
|
作者
Finotello, Francesca [1 ]
Di Camillo, Barbara [2 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Univ Padua, Dept Informat Engn, Bioengn, I-35131 Padua, Italy
关键词
RNA-seq; differential gene expression; NGS; next-generation sequencing; transcriptomics; ALIGNMENT ALGORITHMS; STATISTICAL-METHODS; READ ALIGNMENT; LENGTH BIAS; QUANTIFICATION; NORMALIZATION; IDENTIFICATION; TOOLS; DNA; TRANSCRIPTOMES;
D O I
10.1093/bfgp/elu035
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNA-seq is a methodology for RNA profiling based on next-generation sequencing that enables to measure and compare gene expression patterns at unprecedented resolution. Although the appealing features of this technique have promoted its application to a wide panel of transcriptomics studies, the fast-evolving nature of experimental protocols and computational tools challenges the definition of a unified RNA-seq analysis pipeline. In this review, focused on the study of differential gene expression with RNA-seq, we go through themain steps of data processing and discuss open challenges and possible solutions.
引用
收藏
页码:130 / 142
页数:13
相关论文
共 50 条
  • [1] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    [J]. CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [2] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    [J]. BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [3] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [4] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    [J]. BMC BIOINFORMATICS, 2013, 14 : 110
  • [5] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    [J]. BMC Bioinformatics, 14
  • [6] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    [J]. Genome Biology, 14
  • [7] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Rapaport, Franck
    Khanin, Raya
    Liang, Yupu
    Pirun, Mono
    Krek, Azra
    Zumbo, Paul
    Mason, Christopher E.
    Socci, Nicholas D.
    Betel, Doron
    [J]. GENOME BIOLOGY, 2013, 14 (09):
  • [8] Stability of methods for differential expression analysis of RNA-seq data
    Bingqing Lin
    Zhen Pang
    [J]. BMC Genomics, 20
  • [9] Novel Data Transformations for RNA-seq Differential Expression Analysis
    Zhang, Zeyu
    Yu, Danyang
    Seo, Minseok
    Hersh, Craig P.
    Weiss, Scott T.
    Qiu, Weiliang
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] A comparison of methods for differential expression analysis of RNA-seq data
    Soneson, Charlotte
    Delorenzi, Mauro
    [J]. BMC BIOINFORMATICS, 2013, 14