Manifold Regularized Discriminative Nonnegative Matrix Factorization With Fast Gradient Descent

被引:270
|
作者
Guan, Naiyang [1 ]
Tao, Dacheng [2 ]
Luo, Zhigang [1 ]
Yuan, Bo [3 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient descent; nonnegative matrix factorization (NMF); manifold regularization; RECOGNITION; PARTS; FRAMEWORK; OBJECTS;
D O I
10.1109/TIP.2011.2105496
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R-1600, FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.
引用
收藏
页码:2030 / 2048
页数:19
相关论文
共 50 条
  • [21] Deep manifold regularized semi-nonnegative matrix factorization for Multi-view Clustering
    Liu, Xiangnan
    Ding, Shifei
    Xu, Xiao
    Wang, Lijuan
    APPLIED SOFT COMPUTING, 2023, 132
  • [22] Coordinate projected gradient descent minimization and its application to orthogonal nonnegative matrix factorization
    Chorobura, Flavia
    Lupu, Daniela
    Necoara, Ion
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 6929 - 6934
  • [23] Discriminative Layered Nonnegative Matrix Factorization for Speech Separation
    Hsu, Chung-Chien
    Chi, Tai-Shih
    Chien, Jen-Tzung
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 560 - 564
  • [24] STRUCTURED DISCRIMINATIVE NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Li, Xue
    Zhou, Jun
    Tong, Lei
    Yu, Xun
    Guo, Jianhui
    Zhao, Chunxia
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1848 - 1852
  • [25] Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Cai, Deng
    He, Xiaofei
    Han, Jiawei
    Huang, Thomas S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1548 - 1560
  • [26] Graph Regularized Nonnegative Matrix Factorization with Sparse Coding
    Lin, Chuang
    Pang, Meng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [27] Robust graph regularized nonnegative matrix factorization for clustering
    Huang, Shudong
    Wang, Hongjun
    Li, Tao
    Li, Tianrui
    Xu, Zenglin
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (02) : 483 - 503
  • [28] Robust graph regularized nonnegative matrix factorization for clustering
    Shudong Huang
    Hongjun Wang
    Tao Li
    Tianrui Li
    Zenglin Xu
    Data Mining and Knowledge Discovery, 2018, 32 : 483 - 503
  • [29] Robust Graph Regularized Nonnegative Matrix Factorization for Clustering
    Peng, Chong
    Kang, Zhao
    Hu, Yunhong
    Cheng, Jie
    Cheng, Qiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (03)
  • [30] Manifold-respecting discriminant nonnegative matrix factorization
    An, Shounan
    Yoo, Jiho
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2011, 32 (06) : 832 - 837