Big Data and Machine Learning Driven Handover Management and Forecasting

被引:0
|
作者
Vy, Le Luong [1 ]
Tung, Li-Ping [2 ]
Lin, Bao-Shuh Paul [1 ,2 ]
机构
[1] Natl Chiao Tung Univ, Coll Comp Sci, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Microelect & Informat Res Ctr, Hsinchu, Taiwan
关键词
key performance indicators (KPIs); Machine Learning; SON; 5G; drive test; handover; big data;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Handover (HO), as a key aspect of mobility management, plays an important role in improving network quality and mobility performance in mobile networks. Especially, in 5G networks, heterogeneous networks (HetNets) deployment of macro cells and small cells, and the deployment of ultra-dense networks (UDNs) make HO management become more challenging. Besides, the understanding of HO behavior in a cell is quite limited in existing studies, thus the forecasting HO for an individual cell is complicated, even impossible. This challenge led the authors to propose a practical process for managing and forecasting HO for a huge number of cells, based on machine-learning (ML) algorithms and big data. Moreover, based on HO forecasting, the authors also propose an approach to detect any abnormal HO in cells. The performance of the proposed approaches was evaluated by applying it to a real dataset that collected HO KPI of more than 6000 cells of a real network during the years, 2016 and 2017. The results show that the study was successful in identifying, separating HO behavior, forecasting the future number of HO attempts, and detecting abnormal HO behaviors of cells.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 50 条
  • [21] The Prediction of Flight Delay: Big Data-driven Machine Learning Approach
    Huo, Jiage
    Keung, K. L.
    Lee, C. K. M.
    Ng, Kam K. H.
    Li, K. C.
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2020, : 190 - 194
  • [22] Forecasting Chinese cruise tourism demand with big data: An optimized machine learning approach
    Xie, Gang
    Qian, Yatong
    Wang, Shouyang
    TOURISM MANAGEMENT, 2021, 82
  • [23] PV Forecasting Using Support Vector Machine Learning in a Big Data Analytics Context
    Preda, Stefan
    Oprea, Simona-Vasilica
    Bara, Adela
    Belciu , Anda
    SYMMETRY-BASEL, 2018, 10 (12):
  • [24] The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
    Georgoulis, Manolis K.
    Bloomfield, D. Shaun
    Piana, Michele
    Massone, Anna Maria
    Soldati, Marco
    Gallagher, Peter T.
    Pariat, Etienne
    Vilmer, Nicole
    Buchlin, Eric
    Baudin, Frederic
    Csillaghy, Andre
    Sathiapal, Hanna
    Jackson, David R.
    Alingery, Pablo
    Benvenuto, Federico
    Campi, Cristina
    Florios, Konstantinos
    Gontikakis, Constantinos
    Guennou, Chloe
    Guerra, Jordan A.
    Kontogiannis, Ioannis
    Latorre, Vittorio
    Murray, Sophie A.
    Park, Sung-Hong
    von Stachelski, Samuelvon
    Torbica, Aleksandar
    Vischi, Dario
    Worsfold, Mark
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2021, 11
  • [25] The flare likelihood and region eruption forecasting (FLARECAST) project: Flare forecasting in the big data & machine learning era
    Georgoulis, Manolis K.
    Bloomfield, D.S.
    Piana, M.
    Massone, A.M.
    Soldati, M.
    Gallagher, P.T.
    Pariat, E.
    Vilmer, N.
    Buchlin, E.
    Baudin, F.
    Csillaghy, A.
    Sathiapal, H.
    Jackson, D.R.
    Alingery, P.
    Benvenuto, F.
    Campi, C.
    Florios, K.
    Gontikakis, C.
    Guennou, C.
    Guerra, J.A.
    Kontogiannis, I.
    Latorre, V.
    Murray, S.A.
    Park, S.-H.
    von Stachelski, S.
    Torbica, A.
    Vischi, D.
    Worsfold, M.
    arXiv, 2021,
  • [27] Forecasting, Data Mining and Machine Learning
    OPERATIONS RESEARCH PROCEEDINGS 2010, 2011, : 1 - 1
  • [28] Big Data Analytics and Management Forecasting Behavior
    Goh, Beng Wee
    Li, Na
    Ranasinghe, Tharindra
    ACCOUNTING HORIZONS, 2024, 38 (03) : 59 - 76
  • [29] Machine learning for big data analytics
    Oja, E. (erkki.oja@aalto.fi), 1600, Springer Verlag (384):
  • [30] Big data and machine learning in health
    Carvalho, D.
    Cruz, R.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2020, 30 : 10 - 11