We show that in the classical interaction picture the echo dynamics, namely, the composition of perturbed forward and unperturbed backward Hamiltonian evolution, can be treated as a time-dependent Hamiltonian system. For strongly chaotic (Anosov) systems we derive a cascade of exponential decays for the classical Loschmidt echo, starting with the leading Lyapunov exponent, followed by a sum of the two largest exponents, etc. In the loxodromic case a decay starts with the rate given as twice the largest Lyapunov exponent. For a class of perturbations of symplectic maps the echo dynamics exhibits a drift resulting in a superexponential decay of the Loschmidt echo.
机构:
Univ Lille 1, UFR Math, UMR CNRS 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
Univ Nantes, UMR 6629, Lab Math Jean Leray, 2 Rue Houssiniere,BP92208, F-44322 Nantes 3, FranceUniv Lille 1, UFR Math, UMR CNRS 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
Riviere, Gabriel
Ueberschar, Henrik
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Univ, UFR Math, UMR CNRS 7586, Inst Math Jussieu, F-75252 Paris 05, FranceUniv Lille 1, UFR Math, UMR CNRS 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dipartimento Fis JJ Giamniagi, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dipartimento Fis JJ Giamniagi, RA-1428 Buenos Aires, DF, Argentina
Wisniacki, DA
PHYSICAL REVIEW E,
2003,
67
(01):
: 162051
-
162056