Faster than Lyapunov decays of the classical Loschmidt echo

被引:36
|
作者
Veble, G [1 ]
Prosen, T
机构
[1] Univ Ljubljana, FMF, Dept Phys, Ljubljana, Slovenia
[2] Univ Maribor, Ctr Appl Math & Theoret Phys, SLO-2000 Maribor, Slovenia
关键词
D O I
10.1103/PhysRevLett.92.034101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that in the classical interaction picture the echo dynamics, namely, the composition of perturbed forward and unperturbed backward Hamiltonian evolution, can be treated as a time-dependent Hamiltonian system. For strongly chaotic (Anosov) systems we derive a cascade of exponential decays for the classical Loschmidt echo, starting with the leading Lyapunov exponent, followed by a sum of the two largest exponents, etc. In the loxodromic case a decay starts with the rate given as twice the largest Lyapunov exponent. For a class of perturbations of symplectic maps the echo dynamics exhibits a drift resulting in a superexponential decay of the Loschmidt echo.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Universality of the Lyapunov regime for the Loschmidt echo
    Cucchietti, FM
    Pastawski, HM
    Jalabert, RA
    PHYSICAL REVIEW B, 2004, 70 (03) : 035311 - 1
  • [2] Loschmidt echo and Lyapunov exponent in a quantum disordered system
    Adamov, Y
    Gornyi, IV
    Mirlin, AD
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [3] Decay of the classical Loschmidt echo in integrable systems
    Benenti, G
    Casati, G
    Veble, G
    PHYSICAL REVIEW E, 2003, 68 (03):
  • [4] Loschmidt echo in quantum maps: the elusive nature of the Lyapunov regime
    Garcia-Mata, Ignacio
    Wisniacki, Diego A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (31)
  • [5] Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo
    Jacquod, P
    Silvestrov, PG
    Beenakker, CWJ
    PHYSICAL REVIEW E, 2001, 64 (05): : 4 - 055203
  • [6] Classical Loschmidt echo in chaotic many-body systems
    Veble, G
    Prosen, T
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [7] Universal decay of the classical Loschmidt echo of neutrally stable mixing dynamics
    Casati, G
    Prosen, T
    Lan, JH
    Li, BW
    PHYSICAL REVIEW LETTERS, 2005, 94 (11)
  • [8] Decoherence and the Loschmidt echo
    Cucchietti, FM
    Dalvit, DAR
    Paz, JP
    Zurek, WH
    PHYSICAL REVIEW LETTERS, 2003, 91 (21)
  • [9] Quantum walks with quantum chaotic coins: Loschmidt echo, classical limit, and thermalization
    Omanakuttan, Sivaprasad
    Lakshminarayan, Arul
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [10] Mesoscopic fluctuations of the Loschmidt echo
    Petitjean, C
    Jacquod, P
    PHYSICAL REVIEW E, 2005, 71 (03):