We show that in the classical interaction picture the echo dynamics, namely, the composition of perturbed forward and unperturbed backward Hamiltonian evolution, can be treated as a time-dependent Hamiltonian system. For strongly chaotic (Anosov) systems we derive a cascade of exponential decays for the classical Loschmidt echo, starting with the leading Lyapunov exponent, followed by a sum of the two largest exponents, etc. In the loxodromic case a decay starts with the rate given as twice the largest Lyapunov exponent. For a class of perturbations of symplectic maps the echo dynamics exhibits a drift resulting in a superexponential decay of the Loschmidt echo.
机构:
Lab TANDAR CNEA, Dept Fis, Buenos Aires, DF, Argentina
CONICET UNMdP, Inst Invest Fis Mar del Plata IFIMAR, RA-3350 Mar Del Plata, ArgentinaLab TANDAR CNEA, Dept Fis, Buenos Aires, DF, Argentina
Garcia-Mata, Ignacio
Wisniacki, Diego A.
论文数: 0引用数: 0
h-index: 0
机构:
Consejo Nacl Invest Cient & Tecn, IFIBA, RA-1033 Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, FCEyN UBA, Dept Fis, RA-1033 Buenos Aires, DF, ArgentinaLab TANDAR CNEA, Dept Fis, Buenos Aires, DF, Argentina
机构:
Univ New Mexico, Ctr Quantum Informat & Control CQuIC, Dept Phys & Astron, Albuquerque, NM 87131 USAUniv New Mexico, Ctr Quantum Informat & Control CQuIC, Dept Phys & Astron, Albuquerque, NM 87131 USA
Omanakuttan, Sivaprasad
Lakshminarayan, Arul
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, IndiaUniv New Mexico, Ctr Quantum Informat & Control CQuIC, Dept Phys & Astron, Albuquerque, NM 87131 USA