Multiclass Classification of UML Diagrams from Images Using Deep Learning

被引:4
|
作者
Shcherban, Sergei [1 ]
Liang, Peng [1 ]
Li, Zengyang [2 ]
Yang, Chen [3 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
[3] Shenzhen Polytech, Sch Artificial Intelligence, Shenzhen 518000, Peoples R China
基金
国家重点研发计划;
关键词
UML diagrams; neural network; deep learning; multiclass classification; image classification;
D O I
10.1142/S0218194021400179
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unified Modeling Language (UML) diagrams are a recognized standard modeling language for representing design of software systems. For academic research, large cases containing UML diagrams are needed. One of the challenges in collecting such datasets is automatically determining whether an image is a UML diagram or not and what type of UML diagram an image contains. In this work, we collected UML diagrams from open datasets and manually labeled them into 10 types of UML diagrams (i.e. class diagrams, activity diagrams, use case diagrams, sequence diagrams, communication diagrams, component diagrams, deployment diagrams, object diagrams, package diagrams, and state machine diagrams) and non-UML images. We evaluated the performance of seven popular neural network architectures using transfer learning on the dataset of 4706 images, including 700 class diagrams, 454 activity diagrams, 651 use case diagrams, 706 sequence diagrams, 204 communication diagrams, 208 component diagrams, 287 deployment diagrams, 207 object diagrams, 246 package diagrams, 323 state machine diagrams, and 720 non-UML images, respectively. We also proposed our neural network architecture for multiclass classification of UML diagrams. The experiment results show that Xception achieved the best performance amongst the algorithms we evaluated with a precision of 93.03%, a recall of 92.44%, and an F1-score of 92.73%. Moreover, it is possible to develop small and almost the same efficient neural network architectures, that our proposed architecture has the least parameters (around 2.4 millions) and spends the least time per image (0.0135s per image using graphics processing unit) for classifying UML diagrams with a precision of 91.25%, a recall of 90.34%, and an F1-score of 90.79%.
引用
收藏
页码:1683 / 1698
页数:16
相关论文
共 50 条
  • [31] Classification of cancer histology images using deep learning
    Xie, Weidong
    [J]. CANCER RESEARCH, 2019, 79 (13)
  • [32] Detection and Classification of Hysteroscopic Images Using Deep Learning
    Raimondo, Diego
    Raffone, Antonio
    Salucci, Paolo
    Raimondo, Ivano
    Capobianco, Giampiero
    Galatolo, Federico Andrea
    Cimino, Mario Giovanni Cosimo Antonio
    Travaglino, Antonio
    Maletta, Manuela
    Ferla, Stefano
    Virgilio, Agnese
    Neola, Daniele
    Casadio, Paolo
    Seracchioli, Renato
    [J]. CANCERS, 2024, 16 (07)
  • [33] Medical images classification using deep learning: a survey
    Kumar, Rakesh
    Kumbharkar, Pooja
    Vanam, Sandeep
    Sharma, Sanjeev
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 19683 - 19728
  • [34] Efficient classification of the hyperspectral images using deep learning
    Singh, Simranjit
    Kasana, Singara Singh
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (20) : 27061 - 27074
  • [35] Retinal Disease Classification from OCT Images Using Deep Learning Algorithms
    Kim, Jongwoo
    Tran, Loc
    [J]. 2021 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2021, : 129 - 134
  • [36] SKIN LESION CLASSIFICATION FROM DERMOSCOPIC IMAGES USING DEEP LEARNING TECHNIQUES
    Lopez, Adria Romero
    Giro-i-Nieto, Xavier
    Burdick, Jack
    Marques, Oge
    [J]. 2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 49 - 54
  • [37] Classification of brain tumors from MR images using deep transfer learning
    Polat, Ozlem
    Gungen, Cahfer
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (07): : 7236 - 7252
  • [38] Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning
    Fraiwan, Mohammad
    Faouri, Esraa
    Khasawneh, Natheer
    [J]. PLANTS-BASEL, 2022, 11 (20):
  • [39] Classification of brain tumors from MR images using deep transfer learning
    Özlem Polat
    Cahfer Güngen
    [J]. The Journal of Supercomputing, 2021, 77 : 7236 - 7252
  • [40] A transfer learning approach for multiclass classification of Alzheimer's disease using MRI images
    Khan, Rizwan
    Akbar, Saeed
    Mehmood, Atif
    Shahid, Farah
    Munir, Khushboo
    Ilyas, Naveed
    Asif, M.
    Zheng, Zhonglong
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 16