Quantum spin ladders of non-Abelian anyons

被引:19
|
作者
Poilblanc, Didier [1 ,2 ]
Ludwig, Andreas W. W. [3 ]
Trebst, Simon [4 ]
Troyer, Matthias [5 ]
机构
[1] CNRS, Phys Theor Lab, F-31062 Toulouse, France
[2] Univ Toulouse, F-31062 Toulouse, France
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
[5] ETH, CH-8093 Zurich, Switzerland
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 13期
基金
瑞士国家科学基金会;
关键词
MONTE-CARLO; STATES;
D O I
10.1103/PhysRevB.83.134439
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum ladder models, consisting of coupled chains, form intriguing systems bridging one and two dimensions and have been well studied in the context of quantum magnets and fermionic systems. Here we consider ladder systems made of more exotic quantum mechanical degrees of freedom, so-called non-Abelian anyons, which can be thought of as certain quantum deformations of ordinary SU(2) spins. Such non-Abelian anyons occur as quasiparticle excitations in topological quantum fluids, including p(x) + ip(y) superconductors, certain fractional quantum Hall states, and rotating Bose-Einstein condensates. Here we use a combination of exact diagonalization and conformal field theory to determine the phase diagrams of ladders with up to four chains. We discuss how phenomena familiar from ordinary SU(2) spin ladders are generalized in their anyonic counterparts, such as gapless and gapped phases, odd and even effects with the ladder width, and elementary "magnon" excitations. Other features are entirely due to the topological nature of the anyonic degrees of freedom. In general, two-dimensional systems of interacting localized non-Abelian anyons are anyonic generalizations of two-dimensional quantum magnets.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Active error correction for Abelian and non-Abelian anyons
    Wootton, James R.
    Hutter, Adrian
    [J]. PHYSICAL REVIEW A, 2016, 93 (02)
  • [22] Numerical simulation of non-Abelian anyons
    Kirchner, Nico
    Millar, Darragh
    Ayeni, Babatunde M.
    Smith, Adam
    Slingerland, Joost K.
    Pollmann, Frank
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [23] Fault-Tolerant Quantum Error Correction for non-Abelian Anyons
    Guillaume Dauphinais
    David Poulin
    [J]. Communications in Mathematical Physics, 2017, 355 : 519 - 560
  • [24] Fault-Tolerant Quantum Error Correction for non-Abelian Anyons
    Dauphinais, Guillaume
    Poulin, David
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (02) : 519 - 560
  • [25] Detecting Non-Abelian Anyons by Charging Spectroscopy
    Ben-Shach, G.
    Laumann, C. R.
    Neder, I.
    Yacoby, A.
    Halperin, B. I.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (10)
  • [26] Identifying non-Abelian anyons with upstream noise
    Yutushui, Misha
    Mross, David F.
    [J]. PHYSICAL REVIEW B, 2023, 108 (24)
  • [27] NON-ABELIAN ANYONS IN A NON-COVARIANT APPROACH
    KAPUSTIN, AN
    PRONIN, PI
    [J]. PHYSICS LETTERS B, 1993, 303 (1-2) : 45 - 49
  • [28] Braiding and Fusion of Non-Abelian Vortex Anyons
    Mawson, T.
    Petersen, T. C.
    Slingerland, J. K.
    Simula, T. P.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [29] Splitting the Topological Degeneracy of Non-Abelian Anyons
    Bonderson, Parsa
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (11)
  • [30] Exotic non-Abelian anyons from conventional fractional quantum Hall states
    Clarke, David J.
    Alicea, Jason
    Shtengel, Kirill
    [J]. NATURE COMMUNICATIONS, 2013, 4